World Library  
Flag as Inappropriate
Email this Article

Daidzein

Article Id: WHEBN0005063432
Reproduction Date:

Title: Daidzein  
Author: World Heritage Encyclopedia
Language: English
Subject: Isoflavones, Soybean, Puerarin, Daidzin, Femarelle
Collection: Glycine Receptor Antagonists, Isoflavones
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Daidzein

Daidzein[1]
Diazein molecule
Names
IUPAC name
7-Hydroxy-3-(4-hydroxyphenyl) chromen-4-one
Other names
4',7-Dihydroxyisoflavone
Daidzeol
Isoaurostatin
Identifiers
 Y
ChEBI  Y
ChEMBL  Y
ChemSpider  Y
Jmol-3D images Image
KEGG  Y
PubChem
UNII  Y
Properties
C15H10O4
Molar mass 254.23 g/mol
Appearance Pale yellow prisms
Melting point 315 to 323 °C (599 to 613 °F; 588 to 596 K) (decomposes)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 Y  (: Y/N?)

Daidzein structurally belongs to the group of isoflavones.

Contents

  • Natural occurrences 1
  • In food sources 2
  • Biological activities 3
    • Activation of PPARs 3.1
    • Cell proliferation studies 3.2
    • Antioxidant 3.3
    • Daidzein metabolite S-equol activities 3.4
  • Glycosides 4
  • List of plants that contain the chemical 5
  • References 6

Natural occurrences

Daidzein and other isoflavone compounds, such as genistein, are present in a number of plants and herbs like Kwao Krua (Pueraria mirifica) and Kudzu (Pueraria lobata). It can also be found in Maackia amurensis cell cultures.[2]

In food sources

Daidzein can be found in food such as soybeans and soy products like tofu and textured vegetable protein. Soy isoflavones are a group of compounds found in and isolated from the soybean. Of note, total isoflavones in soybeans are—in general—37 percent daidzein, 57 percent genistein and 6 percent glycitein, according to USDA data.[3] Soy germ contains 41.7 percent daidzein.[4]

Biological activities

Daidzein can be converted to its end metabolite S-equol in some humans based on the presence of certain intestinal bacteria. Based on several decades of research, S-equol has potential for significant health benefits.

Daidzein has no classification in the United States, where it is not considered to be generally recognized as safe (GRAS),[5] and has not been approved as a drug for any indication. It is a component of foods and dietary supplements derived from soy.[6] Dietary supplements are not regulated as drugs in the U.S., and the labeling of dietary supplements in the U.S. may not describe the supplement as having any drug activity or effectiveness.[7]

Scientists have studied some of the activities of daidzein in their laboratories, working with cells or with animals such as mice. Studies in cells and in animals sometimes give hints as to what a chemical might do when given to humans, but no one can know what a chemical does in humans until the chemical is tested in a clinical trial.

Activation of PPARs

Daidzein transactivates all three PPAR isoforms, α, δ, and γ and influences target cells.[8]

Cell proliferation studies

Daidzein has both estrogenic and anti-estrogenic effects. Experiments in cells and in animals showed that lower concentrations stimulate breast tumor growth in in vitro and in vivo, and ihibits the antitumor effect of the cancer drug tamoxifen, but higher concentrations (above 10 μM) have the contrary effect. [9] T47D:A18/PKC alpha tumor growth was demonstrated to be stimulated by genistein, but partially inhibited by daidzein; however, coadministration of tamoxifen with either daidzein or genistein produced tumors of greater size.[10]

Antioxidant

Scientific studies of daidzein's antioxidant properties have given contradictory results: some studies have shown antioxidant properties in laboratory experiments on cells, but in other experiments daidzein has caused oxidative stress on cells.[11]

Daidzein metabolite S-equol activities

Daidzein, when consumed from soy, is transformed in some humans, but not all, to produce S-equol [7-hydroxy-3-(49-hydroxyphenyl)-chroman],[12] Because it is a metabolite of daidzein, S-equol is not of plant origin. The molecular and physical structure of S-equol is similar to that of estradiol,[13] the main sex hormone found in women.

The ability to transform daidzein into S-equol is based on the presence of certain intestinal bacteria. In fact, several studies indicate that only 25 to 30 percent of the adult population of Western countries produces S-equol after eating soy foods containing isoflavones,[13][14][15][16] significantly lower than the reported 50 to 60 percent frequency of equol-producers in adults from Japan, Korea, or China.[17][18][19][20]

Although still under investigation, the ability to produce S-equol may be associated with other health benefits, according to data from epidemiological and clinical trials. Studies in both animal models and humans have yielded data about the potential of S-equol use in menopause[21][22] breast and prostate cancer,[13] and bone health.[23][24]

Glycosides

List of plants that contain the chemical

References

  1. ^ Merck Index, 11th Edition, 2805.
  2. ^ Isoflavonoid production by callus cultures of Maackia amurensis. S.A Fedoreyev, T.V Pokushalov, M.V Veselova, L.I Glebko, N.I Kulesh, T.I Muzarok, L.D Seletskaya, V.P Bulgakov and Yu.N Zhuravlev, Fitoterapia, 1 August 2000, Volume 71, Issue 4, Pages 365–372, doi:10.1016/S0367-326X(00)00129-5
  3. ^ "Isoflavones contents of food". Top Cultures. Retrieved 2012-05-15. 
  4. ^ Zhang, Y.; Wang, G. J.; Song, T. T.; Murphy, P. A.; Hendrich, S. (1999). "Urinary disposition of the soybean isoflavones daidzein, genistein and glycitein differs among humans with moderate fecal isoflavone degradation activity". The Journal of Nutrition 129 (5): 957–962.  
  5. ^ FDA GRAS database
  6. ^ Fact Sheet On The Phytoestrogen Daidzein
  7. ^ FDA 101: Dietary Supplements
  8. ^ Dang Z. C.; Löwik, C. (2004). "The Balance between Concurrent Activation of ERs and PPARs Determines Daidzein-Induced Osteogenesis and Adipogenesis". Journal of Bone and Mineral Research 19 (5): 853–861.  
  9. ^ de Lemos, M. L. (2001). "Effects of soy phytoestrogens genistein and daidzein on breast cancer growth.". Annals of Pharmacotherapy 35 (9): 11118–11121.  
  10. ^ Tonetti, D. A.; Zhang, Y.; Zhao, H.; Lim, S. B.; Constantinou, A. I. (2007). "The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant T47D / PKCα". Nutrition and Cancer 58 (2): 1222–1229.  
  11. ^ Röhrdanz, E.; Ohler, S.; Tran-Thi, Q. H.; Kahl, R. (2002). "The Phytoestrogen Daidzein Affects the Antioxidant Enzyme System of Rat Hepatoma H4IIE Cells" (pdf). Journal of Nutrition 132 (2): 370–375.  
  12. ^ Setchell, K. D.; Clerici, C. (2010). "Equol: History, Chemistry, and Formation" (pdf). The Journal of Nutrition 140 (7): 1355S–1362S.  
  13. ^ a b c Atkinson, C.; Frankenfeld, C. L.; Lampe, J. W. (2005). "Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health" (pdf). Experimental Biology and Medicine 230 (3): 155–170.  
  14. ^ Lampe, J. W.; Karr, S. C.; Hutchins, A. M.; Slavin, J. L. (1998). "Urinary Equol Excretion with a Soy Challenge: Influence of Habitual Diet". Proceedings of the Society for Experimental Biology and Medicine 217 (3): 335–339.  
  15. ^ Setchell, K. D.; Cole, S. J. (2006). "Method of Defining Equol-Producer Status and its Frequency among Vegetarians" (pdf). The Journal of Nutrition 136 (8): 2188–2193.  
  16. ^ Rowland, I. R.; Wiseman, H.; Sanders, T. A.; Adlercreutz, H.; Bowey, E. A. (2000). "Interindividual Variation in Metabolism of Soy Isoflavones and Lignans: Influence of Habitual Diet on Equol Production by the Gut Microflora". Nutrition and Cancer 36 (1): 27–32.  
  17. ^ Watanabe, S.; Yamaguchi, M.; Sobue, T.; Takahashi, T.; Miura, T.; Arai, Y.; Mazur, W.; Wähälä, K.; Adlercreutz, H. (1998). "Pharmacokinetics of Soybean Isoflavones in Plasma, Urine and Feces of Men after Ingestion of 60 g Baked Soybean Powder (Kinako)" (pdf). The Journal of Nutrition 128 (10): 1710–1715.  
  18. ^ Arai, Y.; Uehara, M.; Sato, Y.; Kimira, M.; Eboshida, A.; Adlercreutz, H.; Watanabe, S. (2000). "Comparison of Isoflavones among Dietary Intake, Plasma Concentration and Urinary Excretion for Accurate Estimation of Phytoestrogen Intake" (pdf). Journal of Epidemiology 10 (2): 127–135.  
  19. ^ Akaza, H.; Miyanaga, N.; Takashima, N.; Naito, S.; Hirao, Y.; Tsukamoto, T.; Fujioka, T.; Mori, M.; Kim, W. J.; Song, J. M.; Pantuck, A. J. (2004). "Comparisons of Percent Equol Producers between Prostate Cancer Patients and Controls: Case-controlled Studies of Isoflavones in Japanese, Korean and American Residents" (pdf). Japanese Journal of Clinical Oncology 34 (2): 86–89.  
  20. ^ Song, K. B.; Atkinson, C.; Frankenfeld, C. L.; Jokela, T.; Wähälä, K.; Thomas, W. K.; Lampe, J. W. (2006). "Prevalence of Daidzein-Metabolizing Phenotypes Differs between Caucasian and Korean American Women and Girls" (pdf). The Journal of Nutrition 136 (5): 1347–1351.  
  21. ^ Aso, T.; Uchiyama, S.; Matsumura, Y.; Taguchi, M.; Nozaki, M.; Takamatsu, K.; Ishizuka, B.; Kubota, T.; Mizunuma, H.; Ohta, H. (2012). "A natural S-equol supplement alleviates hot flushes and other menopausal symptoms in equol nonproducing postmenopausal Japanese women".  
  22. ^ Jou, H. J.; Wu, S. C.; Chang, F. W.; Ling, P. Y.; Chu, K. S.; Wu, W. H. (2008). "Effect of intestinal production of equol on menopausal symptoms in women treated with soy isoflavones". International Journal of Gynaecology and Obstetrics 102 (1): 44–49.  
  23. ^ Wu, J.; Oka, J.; Ezaki, J.; Ohtomo, T.; Ueno, T.; Uchiyama, S.; Toda, T.; Uehara, M.; Ishimi, Y. (2007). "Possible role of equol status in the effects of isoflavone on bone and fat mass in postmenopausal Japanese women: a double-blind, randomized, controlled trial". Menopause 14 (5): 866–874.  
  24. ^ Tousen, Y.; Ezaki, J.; Fujii, Y.; Ueno, T.; Nishimuta, M.; Ishimi, Y. (2011). "Natural S-Equol Decreases Bone Resorption in Postmenopausal, Non-Equol-Producing Japanese Women: A Pilot Randomized, Placebo-Controlled Trial". Menopause 18 (5): 563–574.  
  25. ^ Chen, G.; Zhang, J.; Ye, J. (2001). "Determination of Puerarin, Daidzein and Rutin in Pueraria lobata (Willd.) Ohwi by Capillary Electrophoresis with Electrochemical Detection".  
  26. ^ Xu, H.-N.; He, C.-H. (2007). "Extraction of Isoflavones from Stem of Pueraria lobata (Willd.) Ohwi Using n-Butanol / Water Two-Phase Solvent System and Separation of Daidzein".  
  27. ^ Zhou, H. Y.; Wang, J. H.; Yan, F. Y. (2007). "[Separation and Determination of Puerarin, Daidzin and Daidzein in Stems and Leaves of Pueraria thomsonii by RP-HPLC]". Zhongguo Zhong Yao Za Zhi (in Chinese) 32 (10): 937–939.  


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.