This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000172291 Reproduction Date:
In fluid dynamics, the drag coefficient (commonly denoted as: c_{d}, c_{x} or c_{w}) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation, where a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.^{[1]}
The drag coefficient of any object comprises the effects of the two basic contributors to fluid dynamic drag: skin friction and form drag. The drag coefficient of a lifting airfoil or hydrofoil also includes the effects of lift-induced drag.^{[2]}^{[3]} The drag coefficient of a complete structure such as an aircraft also includes the effects of interference drag.^{[4]}^{[5]}
The drag coefficient c_\mathrm d\, is defined as:
where:
The reference area depends on what type of drag coefficient is being measured. For automobiles and many other objects, the reference area is the projected frontal area of the vehicle. This may not necessarily be the cross sectional area of the vehicle, depending on where the cross section is taken. For example, for a sphere A = \pi r^2\, (note this is not the surface area = \!\ 4 \pi r^2).
For airfoils, the reference area is the nominal wing area. Since this tends to be large compared to the frontal area, the resulting drag coefficients tend to be low: much lower than for a car with the same drag and frontal area, and at the same speed.
Airships and some bodies of revolution use the volumetric drag coefficient, in which the reference area is the square of the cube root of the airship volume (volume to the two-thirds power). Submerged streamlined bodies use the wetted surface area.
Two objects having the same reference area moving at the same speed through a fluid will experience a drag force proportional to their respective drag coefficients. Coefficients for unstreamlined objects can be 1 or more, for streamlined objects much less.
The drag equation:
is essentially a statement that the drag force on any object is proportional to the density of the fluid and proportional to the square of the relative flow speed between the object and the fluid.
C_{d} is not a constant but varies as a function of flow speed, flow direction, object position, object size, fluid density and fluid viscosity. Speed, kinematic viscosity and a characteristic length scale of the object are incorporated into a dimensionless quantity called the Reynolds number or \scriptstyle Re\,. \scriptstyle C_\mathrm d\, is thus a function of \scriptstyle Re\, . In compressible flow, the speed of sound is relevant and \scriptstyle C_\mathrm d\, is also a function of Mach number \scriptstyle Ma\, .
For a certain body shape, the drag coefficient \scriptstyle C_\mathrm d\, only depends on the Reynolds number \scriptstyle Re\,, Mach number \scriptstyle Ma\, and the direction of the flow. For low Mach number \scriptstyle Ma\,, the drag coefficient is independent of Mach number. Also, the variation with Reynolds number \scriptstyle Re\, within a practical range of interest is usually small, while for cars at highway speed and aircraft at cruising speed the incoming flow direction is also more-or-less the same. So the drag coefficient \scriptstyle C_\mathrm d\, can often be treated as a constant.^{[8]}
For a streamlined body to achieve a low drag coefficient, the boundary layer around the body must remain attached to the surface of the body for as long as possible, causing the wake to be narrow. A high form drag results in a broad wake. The boundary layer will transition from laminar to turbulent providing the Reynolds number of the flow around the body is high enough. Larger velocities, larger objects, and lower viscosities contribute to larger Reynolds numbers.^{[9]}
For other objects, such as small particles, one can no longer consider that the drag coefficient \scriptstyle C_\mathrm d\, is constant, but certainly is a function of Reynolds number.^{[10]}^{[11]}^{[12]} At a low Reynolds number, the flow around the object does not transition to turbulent but remains laminar, even up to the point at which it separates from the surface of the object. At very low Reynolds numbers, without flow separation, the drag force \scriptstyle F_\mathrm d\, is proportional to \scriptstyle v\, instead of \scriptstyle v^2\,; for a sphere this is known as Stokes law. Reynolds number will be low for small objects, low velocities, and high viscosity fluids.^{[9]}
A \scriptstyle C_\mathrm d\, equal to 1 would be obtained in a case where all of the fluid approaching the object is brought to rest, building up stagnation pressure over the whole front surface. The top figure shows a flat plate with the fluid coming from the right and stopping at the plate. The graph to the left of it shows equal pressure across the surface. In a real flat plate, the fluid must turn around the sides, and full stagnation pressure is found only at the center, dropping off toward the edges as in the lower figure and graph. Only considering the front side, the \scriptstyle C_\mathrm d\, of a real flat plate would be less than 1; except that there will be suction on the back side: a negative pressure (relative to ambient). The overall \scriptstyle C_\mathrm d\, of a real square flat plate perpendicular to the flow is often given as 1.17. Flow patterns and therefore \scriptstyle C_\mathrm d\, for some shapes can change with the Reynolds number and the roughness of the surfaces.
In general, c_\mathrm d\, is not an absolute constant for a given body shape. It varies with the speed of airflow (or more generally with Reynolds number Re). A smooth sphere, for example, has a c_\mathrm d\, that varies from high values for laminar flow to 0.47 for turbulent flow. Although the drag coefficient decreases with increasing Re, the drag force increases.
As noted above, aircraft use their wing area as the reference area when computing c_\mathrm d\,, while automobiles (and many other objects) use frontal cross sectional area; thus, coefficients are not directly comparable between these classes of vehicles. In the aerospace industry, the drag coefficient is sometimes expressed in drag counts where 1 drag count = 0.0001 of a C_d.^{[27]}
Drag, in the context of fluid dynamics, refers to forces that act on a solid object in the direction of the relative flow velocity (note that the diagram below shows the drag in the opposite direction to the flow). The aerodynamic forces on a body come primarily from differences in pressure and viscous shearing stresses. Thereby, the drag force on a body could be divided into two components, namely frictional drag (viscous drag) and pressure drag (form drag). The net drag force could be decomposed as follows:
Therefore, when the drag is dominated by a frictional component, the body is called a streamlined body; whereas in the case of dominant pressure drag, the body is called a bluff body (some authors prefer blunt body ^{[31]}). Thus, the shape of the body and the angle of attack determine the type of drag. For example, an airfoil is considered as a body with a small angle of attack by the fluid flowing across it. This means that it has attached boundary layers, which produce much less pressure drag.
The wake produced is very small and drag is dominated by the friction component. Therefore, such a body (here an airfoil) is described as streamlined, whereas for bodies with fluid flow at high angles of attack, boundary layer separation takes place. This mainly occurs due to adverse pressure gradients at the top and rear parts of an airfoil.
Due to this, wake formation takes place, which consequently leads to eddy formation and pressure loss due to pressure drag. In such situations, the airfoil is stalled and has higher pressure drag than friction drag. In this case, the body is described as a bluff body.
A streamlined body looks like a fish (Tuna, Oropesa, etc.) or an airfoil with small angle of attack, whereas a bluff body looks like a brick, a cylinder or an airfoil with high angle of attack. For a given frontal area and velocity, a streamlined body will have lower resistance than a bluff body. Cylinders and spheres are taken as bluff bodies because the drag is dominated by the pressure component in the wake region at high Reynolds number.
To reduce this drag, either the flow separation could be reduced or the surface area in contact with the fluid could be reduced (to reduce friction drag). This reduction is necessary in devices like cars, bicycle, etc. to avoid vibration and noise production.
Aerodynamic design of cars has evolved from 1920s to the end of 20th century. This change in design from a bluff body to a more streamlined body reduced the drag coefficient from about 0.95 to 0.30.
Stokes' law, Fluid dynamics, Eötvös number, Euler number (physics), Froude number
Pressure, Viscosity, Energy, Isaac Newton, Electromagnetism
Second, Water, Fluid, Glass, Hydrogen
Group velocity, Energy, Apollo program, Phase velocity, Hawaii
FishBase, Thunnus, Scombridae, Atlantic bluefin tuna, Albacore
Very-low-drag bullet, Wind, Artillery, Pi, Air density
Angle of attack, Aircraft, Pitching moment, Lift coefficient, Reynolds number
Viscosity, Reynolds number, Wake, Boundary layer, Pressure
Area, Aerospace, Speed, Drag coefficient, Drag (physics)
Sound barrier, Infinity, Supercritical airfoil, Drag (physics), Drag coefficient