World Library  
Flag as Inappropriate
Email this Article

Gy's sampling theory

Article Id: WHEBN0015132999
Reproduction Date:

Title: Gy's sampling theory  
Author: World Heritage Encyclopedia
Language: English
Subject: Sampling (statistics), List of statistics articles
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Gy's sampling theory

Gy's sampling theory is a theory about the sampling of materials, developed by Pierre Gy from the 1950s to beginning 2000s[1] in articles and books including:

  • (1960) Sampling nomogram
  • (1979) Sampling of particulate materials; theory and practice
  • (1982) Sampling of particulate materials; theory and practice; 2nd edition
  • (1992) Sampling of Heterogeneous and Dynamic Material Systems: Theories of Heterogeneity, Sampling and Homogenizing
  • (1998) Sampling for Analytical Purposes

The abbreviation "TOS" is also used to denote Gy's sampling theory.[2]

Gy's sampling theory uses a model in which the sample taking is represented by independent Bernoulli trials for every particle in the parent population from which the sample is drawn. The two possible outcomes of each Bernoulli trial are: (1) the particle is selected and (2) the particle is not selected. The probability of selecting a particle may be different during each Bernoulli trial. The model used by Gy is mathematically equivalent to Poisson sampling.[3] Using this model, the following equation for the variance of the sampling error in the mass concentration in a sample was derived by Gy:

V = \frac{1}{(\sum_{i=1}^N q_i m_i)^2} \sum_{i=1}^N q_i(1-q_i) m_{i}^{2} \left(a_i - \frac{\sum_{j=1}^N q_j a_j m_j}{\sum_{j=1}^N q_j m_j}\right)^2 .

in which V is the variance of the sampling error, N is the number of particles in the population (before the sample was taken), q i is the probability of including the ith particle of the population in the sample (i.e. the first-order inclusion probability of the ith particle), m i is the mass of the ith particle of the population and a i is the mass concentration of the property of interest in the ith particle of the population.

It is noted that the above equation for the variance of the sampling error is an approximation based on a linearization of the mass concentration in a sample.

In the theory of Gy, correct sampling is defined as a sampling scenario in which all particles have the same probability of being included in the sample. This implies that q i no longer depends on i, and can therefore be replaced by the symbol q. Gy's equation for the variance of the sampling error becomes:

V = \frac{1-q}{q M_\text{batch}^2} \sum_{i=1}^N m_{i}^{2} \left(a_i - a_\text{batch} \right)^2 .

where abatch is the concentration of the property of interest in the population from which the sample is to be drawn and Mbatch is the mass of the population from which the sample is to be drawn. It has been noted that a similar equation had already been derived in 1935 by Kassel and Guy.[4][5]

See also

References

  1. ^ Gy, P (2004), Chemometrics and Intelligent Laboratory Systems, 74, 61-70.
  2. ^ K.H. Esbensen. 50 years of Pierre Gy's “Theory of Sampling”—WCSB1: a tribute. Chemometrics and Intelligent Laboratory Systems. Volume 74, Issue 1, 28 November 2004, pages 3–6.
  3. ^
  4. ^
  5. ^
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.