World Library  
Flag as Inappropriate
Email this Article

Tropopause

Article Id: WHEBN0000140615
Reproduction Date:

Title: Tropopause  
Author: World Heritage Encyclopedia
Language: English
Subject: Uranus, Tropical cyclone, Jet stream, Troposphere, Stratospheric sulfate aerosols (geoengineering)
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Tropopause

The tropopause is the boundary in the Earth's atmosphere between the troposphere and the stratosphere.

Definition

Schematic showing the different layers of the atmosphere (not to scale). The tropopause is located between the troposphere and the stratosphere.
The tropopause lies higher in the tropics than at the poles.

Going upward from the surface, it is the point where air ceases to cool with height, and becomes almost completely dry. More formally, the tropopause is the region of the atmosphere where the World Meteorological Organization:

The tropopause as defined above renders as a first-order discontinuity surface, that is, temperature as a function of height varies continuously through the atmosphere but the temperature gradient does not.[2]

Location

The troposphere is one of the lowest layers of the Earth's atmosphere; it is located right above the planetary boundary layer, and is the layer in which most weather phenomena take place. The troposphere extends upwards from right above the boundary layer, and ranges in height from an average of 9 km (5.6 mi; 30,000 ft) at the poles, to 17 km (11 mi; 56,000 ft) at the Equator.[3][4] In the absence of inversions and not considering moisture, the temperature lapse rate for this layer is 6.5 °C per kilometer, on average, according to the U.S. Standard Atmosphere.[5] A measurement of both the tropospheric and the stratospheric lapse rates helps identifying the location of the tropopause, since temperature increases with height in the stratosphere, and hence the lapse rate becomes negative. The tropopause location coincides with the lowest point at which the lapse rate falls below a prescribed threshold.

Since the tropopause responds to the average temperature of the entire layer that lies underneath it, it is at its peak levels over the Equator, and reaches minimum heights over the poles. On account of this, the coolest layer in the atmosphere lies at about 17 km over the equator. Due to the variation in starting height, the tropopause extremes are referred to as the equatorial tropopause and the polar tropopause.

Given that the lapse rate is not a conservative quantity when the tropopause is considered for stratosphere-troposphere exchanges studies, there exists an alternative definition named dynamic tropopause.[6] It is formed with the aid of potential vorticity, which is defined as the product of the isentropic density, i.e. the density that arises from using potential temperature as the vertical coordinate, and the absolute vorticity, given that this quantity attains quite different values for the troposphere and the stratosphere.[7] Instead of using the vertical temperature gradient as the defining variable, the dynamic tropopause surface is expressed in potential vorticity units (PVU).[nb 1] Given that the absolute vorticity is positive in the Northern Hemisphere and negative in the Southern Hemisphere, the threshold value should be taken as positive north of the Equator and negative south of it.[9] Theoretically, to define a global tropopause in this way, the two surfaces arising from the positive and negative thresholds need to be matched near the equator using another type of surface such as a constant potential temperature surface. Nevertheless, the dynamic tropopause is useless at equatorial latitudes because the isentropes are almost vertical.[8] For the extratropical tropopause in the Northern Hemisphere the WMO established a value of 1.5 PVU,[8] but greater values ranging between 2 and 3.5 PVU have been traditionally used.[10]

It is also possible to define the tropopause in terms of chemical composition. For example, the lower stratosphere has much higher ozone concentrations than the upper troposphere, but much lower water vapor concentrations, so appropriate cutoffs can be used.

Phenomena

The tropopause is not a "hard" boundary. Vigorous thunderstorms, for example, particularly those of tropical origin, will overshoot into the lower stratosphere and undergo a brief (hour-order or less) low-frequency vertical oscillation.[11] Such oscillation sets up a low-frequency atmospheric gravity wave capable of affecting both atmospheric and oceanic currents in the region.

Most commercial aircraft are flown in the lower stratosphere, just above the tropopause, where clouds are usually absent, as also are significant weather perturbations.[12]

See also

Notes

  1. ^ 1 PVU = 10-6 K m2 kg-1 s-1[8]

References

  1. ^
  2. ^ Panchev 1985, p. 129.
  3. ^
  4. ^
  5. ^ Petty 2008, p. 112.
  6. ^ Andrews, Holton & Leovy 1987, p. 371.
  7. ^
  8. ^ a b c
  9. ^
  10. ^
  11. ^
  12. ^ Petty 2008, p. 21.

Bibliography

External links

  • The height of the tropopause
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.