World Library  
Flag as Inappropriate
Email this Article

Blowout (well drilling)


Blowout (well drilling)

The Lucas Gusher at Spindletop, Texas (1901)

A blowout is the uncontrolled release of crude oil and/or natural gas from an oil well or gas well after pressure control systems have failed.[1] Modern wells have special blowout preventers to prevent that.

Prior to the advent of pressure control equipment in the 1920s, the uncontrolled release of oil and gas from a well while drilling was common and was known as an oil gusher, gusher or wild well. An accidental spark during a blowout can lead to a catastrophic oil or gas fire.


  • History 1
    • Notable gushers 1.1
  • Cause of blowouts 2
    • Reservoir pressure 2.1
    • Formation kick 2.2
    • Well control 2.3
  • Types of blowouts 3
    • Surface blowouts 3.1
    • Subsea blowouts 3.2
    • Underground blowouts 3.3
  • Blowout control expertise 4
  • Methods of quenching blowouts 5
    • Subsea Well Containment 5.1
    • Use of nuclear explosions 5.2
  • Notable offshore well blowouts 6
  • See also 7
  • References 8
  • External links 9


Gushers were an icon of oil exploration during the late 19th and early 20th centuries. During that era, the simple drilling techniques such as cable-tool drilling and the lack of blowout preventers meant that drillers could not control high-pressure reservoirs. When these high pressure zones were breached, the oil or natural gas would travel up the well at a high rate, forcing out the drill string and creating a gusher. A well which began as a gusher was said to have "blown in": for instance, the Lakeview Gusher blew in in 1910. These uncapped wells could produce large amounts of oil, often shooting 200 feet (60 m) or higher into the air.[2] A blowout primarily composed of natural gas was known as a gas gusher.

Despite being symbols of new-found wealth, gushers were dangerous and wasteful. They killed workmen involved in drilling, destroyed equipment, and coated the landscape with thousands of barrels of oil; additionally, the explosive concussion released by the well when it pierces an oil/gas reservoir has been responsible for a number of oilmen losing their hearing entirely; standing too near to the drilling rig at the moment it drills into the oil reservoir is extremely hazardous. The impact on wildlife is very hard to quantify, but can only be estimated to be mild in the most optimistic models—realistically, the ecological impact is estimated by scientists across the ideological spectrum to be severe, profound, and lasting.[3]

To complicate matters further, the free flowing oil was—and is—in danger of igniting.[4] One dramatic account of a blowout and fire reads,

With a roar like a hundred express trains racing across the countryside, the well blew out, spewing oil in all directions. The derrick simply evaporated. Casings wilted like lettuce out of water, as heavy machinery writhed and twisted into grotesque shapes in the blazing inferno.[5]

The development of rotary drilling techniques where the density of the drilling fluid is sufficient to overcome the downhole pressure of a newly penetrated zone meant that gushers became avoidable. If however the fluid density was not adequate or fluids were lost to the formation, then there was still a significant risk of a well blowout.

In 1924 the first successful blowout preventer was brought to market.[6] The BOP valve affixed to the wellhead could be closed in the event of drilling into a high pressure zone, and the well fluids contained. Well control techniques could be used to regain control of the well. As the technology developed, blowout preventers became standard equipment, and gushers became a thing of the past.

In the modern petroleum industry, uncontrollable wells became known as blowouts and are comparatively rare. There has been significant improvement in technology, well control techniques, and personnel training which has helped to prevent their occurring.[1] From 1976 to 1981, 21 blowout reports are available.[1]

Notable gushers

  1. Although it didn't actually happen when drilling for oil, an attempt in 1815 to drill for salt produced the earliest known oil gusher. Joseph Eichar and his team were digging for salt west of the town of Wooster, Ohio, along Killbuck Creek, when they struck oil. In a written retelling by Eichar's daughter, Eleanor, the strike produced "a spontaneous outburst, which shot up high as the tops of the highest trees!"[7]
  2. The Shaw Gusher in Oil Springs, Ontario, was North America's (and possibly the world's) first oil gusher when actually drilling for oil. On January 16, 1862, it shot oil from over 60 metres (200 ft) below ground to above the treetops at a rate of 3,000 barrels (480 m3) per day, triggering the oil boom in Lambton County.[8]
  3. Lucas Gusher at Spindletop in Beaumont, Texas in 1901 flowed at 100,000 barrels (16,000 m3) per day at its peak, but soon slowed and was capped within nine days. The well tripled U.S. oil production overnight and marked the start of the Texas oil industry.[9]
  4. Masjed Soleiman, Iran in 1908 marked the first major oil strike recorded in the Middle East.[10]
  5. Dos Bocas in the State of Veracruz, Mexico, was a famous Mexican blowout that formed a large crater, and leaked oil from the main reservoir for many years, even after Pemex nationalized the Mexican oil industry in March 1938.
  6. Lakeview Gusher on the Midway-Sunset Oil Field in Kern County, California of 1910 is believed to be the largest-ever U.S. gusher. At its peak, more than 100,000 barrels (16,000 m3) of oil per day flowed out, reaching as high as 200 feet (60 m) in the air. It remained uncapped for 18 months, spilling over 9 million barrels (1,400,000 m3) of oil, less than half of which was recovered.[2]
  7. A short-lived gusher at Alamitos #1 in Signal Hill, California in 1921 marked the discovery of the Long Beach Oil Field, one of the most productive oil fields in the world.[11]
  8. The Barroso 2 well in Cabimas, Venezuela in December 1922 flowed at around 100,000 barrels (16,000 m3) per day for nine days, plus a large amount of natural gas.[12]
  9. Baba Gurgur near Kirkuk, Iraq, an oilfield known since antiquity, erupted at a rate of 95,000 barrels (15,100 m3) a day in 1927.[13]
  10. The Wild Mary Sudik gusher in Oklahoma City, Oklahoma in 1930 flowed at a rate of 72,000 barrels (11,400 m3) per day.[14]
  11. The Daisy Bradford gusher in 1930 marked the discovery of the East Texas Oil Field, the largest oilfield in the contiguous United States.[15]
  12. The largest known 'wildcat' oil gusher blew near Qom, Iran on August 26, 1956. The uncontrolled oil gushed to a height of 52 m (170 ft), at a rate of 120,000 barrels (19,000 m3) per day. The gusher was closed after 90 days' work by Bagher Mostofi and Myron Kinley (USA).[16]
  13. One of the most troublesome gushers happened on June 23, 1985 at the well #37 at the Tengiz field in Atyrau, Kazakh SSR, Soviet Union, where the deep, 4209 metre well blew out and the 200-metres high gusher self-ignited two days later. Oil pressure up to 800 atm and high hydrogen sulfide content had led to the gusher being capped only on 27 July 1986 when the well was closed by the shaped charge. The total volume of erupted material measured at 4.3 millions metric tons of oil, 1.7 bn m³ of natural gas, and the burning gusher resulted in 890 tons of various mercaptans and more than 900,000 tons of soot released into atmosphere.[17]
  14. The largest underwater blowout in U.S. history occurred on April 20, 2010, in the Gulf of Mexico at the Macondo Prospect oil field. The blowout caused the explosion of the Deepwater Horizon, a mobile offshore drilling platform owned by Transocean and under lease to BP at the time of the blowout. While the exact volume of oil spilled is unknown, as of June 3, 2010, the United States Geological Survey (USGS) Flow Rate Technical Group has placed the estimate at between 35,000 to 60,000 barrels (5,600 to 9,500 m3) of crude oil per day.[18] See also Volume and extent of the Deepwater Horizon oil spill

Cause of blowouts

Reservoir pressure

A petroleum trap. An irregularity (the trap) in a layer of impermeable rocks (the seal) retains upward-flowing petroleum, forming a reservoir.

geologic formations beneath the Earth's surface. Because most hydrocarbons are lighter than rock or water, they often migrate upward through adjacent rock layers until either reaching the surface or becoming trapped within porous rocks (known as reservoirs) by impermeable rocks above. However, the process is influenced by underground water flows, causing oil to migrate hundreds of kilometres horizontally or even short distances downward before becoming trapped in a reservoir. When hydrocarbons are concentrated in a trap, an oil field forms, from which the liquid can be extracted by drilling and pumping. The down hole pressures experienced at the rock structures change depending upon the depth and the characteristic of the source rock.

Formation kick

The downhole fluid pressures are controlled in modern wells through the balancing of the hydrostatic pressure provided by the mud used. Should the balance of the drilling mud pressure be incorrect then formation fluids (oil, natural gas and/or water) begin to flow into the wellbore and up the annulus (the space between the outside of the drill string and the walls of the open hole or the inside of the last casing string set), and/or inside the drill pipe. This is commonly called a kick. If the well is not shut in (common term for the closing of the blow-out preventer valves), a kick can quickly escalate into a blowout when the formation fluids reach the surface, especially when the influx contains gas that expands rapidly as it flows up the wellbore, further decreasing the effective weight of the fluid. In other petroleum engineering words, the formation pore pressure gradient exceeds the mud pressure gradient, even in some cases when the Equivalent Circulating Density ECD is imposed with the mud pumps on the rig.

Additional mechanical barriers such as blowout preventers (BOPs) can be closed to isolate the well while the hydrostatic balance is regained through circulation of fluids in the well.

Early warning signs of a well kick are:

  • Sudden change in drilling rate;
  • Change in surface fluid rate;
  • Change in pump pressure;
  • Reduction in drillpipe weight;
  • Surface mud cut by gas, oil or water;
  • Connection gases, high background gas units, and high bottoms up gas units in the mudlogging unit.


The primary means of detecting a kick is a relative change in the circulation rate back up to the surface into the mud pits. The drilling crew or mud engineer keeps track of the level in the mud pits and/or closely monitors the rate of mud returns versus the rate that is being pumped down the drill pipe. Upon encountering a zone of higher pressure than is being exerted by the hydrostatic head of the drilling mud at the bit, an increase in mud returns would be noticed as the formation fluid influx pushes the drilling mud toward the surface at a higher rate. Conversely, if the rate of returns is slower than expected, it means that a certain amount of the mud is being lost to a thief zone somewhere below the last casing shoe. This does not necessarily result in a kick (and may never become one); however, a drop in the mud level might allow influx of formation fluids from other zones if the hydrostatic head at depth is reduced to less than that of a full column of mud.

Well control

The first response to detecting a kick would be to isolate the wellbore from the surface by activating the blow-out preventers and closing in the well. Then the drilling crew would attempt to circulate in a heavier kill fluid to increase the hydrostatic pressure (sometimes with the assistance of a well control company). In the process, the influx fluids will be slowly circulated out in a controlled manner, taking care not to allow any gas to accelerate up the wellbore too quickly by controlling casing pressure with chokes on a predetermined schedule.

This effect will be minor if the influx fluid is mainly salt water. And with an oil-based drilling fluid it can be masked in the early stages of controlling a kick because gas influx may dissolve into the oil under pressure at depth, only to come out of solution and expand rather rapidly as the influx nears the surface. Once all the contaminant has been circulated out, the casing pressure should have reached zero.

Capping stacks are used for controlling blowouts. The cap is an open valve that is closed after bolted on.[20]

Types of blowouts

Ixtoc I oil well blowout

Well blowouts can occur during the drilling phase, during well testing, during well completion, during production, or during workover activities.[1]

Surface blowouts

Blowouts can eject the drill string out of the well, and the force of the escaping fluid can be strong enough to damage the drilling rig. In addition to oil, the output of a well blowout might include sand, mud, rocks, drilling fluid, natural gas, water, and other substances.

Blowouts will often be ignited by an ignition source, from sparks from rocks being ejected, or simply from heat generated by friction. A well control company will then need to extinguish the well fire or cap the well, and replace the casing head and hangars. The flowing gas may contain poisonous hydrogen sulfide and the oil operator might decide to ignite the stream to convert this to less hazardous substances.

Sometimes, blowouts can be so forceful that they cannot be directly brought under control from the surface, particularly if there is so much energy in the flowing zone that it does not deplete significantly over the course of a blowout. In such cases, other wells (called relief wells) may be drilled to intersect the well or pocket, in order to allow kill-weight fluids to be introduced at depth. When first drilled in the 1930s relief wells were drilled to inject water into the main drill well hole.[21] Contrary to what might be inferred from the term, such wells generally are not used to help relieve pressure using multiple outlets from the blowout zone.

Subsea blowouts

The two main causes of a subsea blowout are equipment failures and imbalances with encountered subsurface reservoir pressure.[22] Subsea wells have pressure control equipment located on the seabed or between the riser pipe and drilling platform. Blowout preventers (BOPs) are the primary safety devices designed to maintain control of geologically driven well pressures. They contain hydraulic-powered cut-off mechanisms to stop the flow of hydrocarbons in the event of a loss of well control.[23]

Even with blowout prevention equipment and processes in place, operators must be prepared to respond to a blowout should one occur. Before drilling a well, a detailed well construction design plan, an Oil Spill Response Plan as well as a Well Containment Plan must be submitted, reviewed and approved by BSEE and is contingent upon access to adequate well containment resources in accordance to NTL 2010-N10.[24]

The Deepwater Horizon well blowout in the Gulf of Mexico in April 2010 occurred at a 5,000 feet (1,500 m) water depth.[25] Current blowout response capabilities in the U.S. Gulf of Mexico meet capture and process rates of 130,000 barrels of fluid per day and a gas handling capacity of 220 million cubic feet per day at depths through 10,000 feet.[26]

Underground blowouts

An underground blowout is a special situation where fluids from high pressure zones flow uncontrolled to lower pressure zones within the wellbore. Usually this is from deeper higher pressure zones to shallower lower pressure formations. There may be no escaping fluid flow at the wellhead.

Blowout control expertise

Myron M. Kinley was a pioneer in fighting oil well fires and blowouts. He developed many patents and designs for the tools and techniques of oil firefighting. His father, Karl T. Kinley, attempted to extinguish an oil well fire with the help of a massive explosion — a method that remains a common technique for fighting oil fires. The first oil well put out with explosives by Myron Kinley and his father, was in 1913.[27] Kinley would later form the M.M. Kinley Company in 1923.[27] Asger "Boots" Hansen and Edward Owen "Coots" Matthews also begin their careers under Kinley.

Paul N. "Red" Adair joined the M.M. Kinley Company in 1946, and worked 14 years with Myron Kinley before starting his own company, Red Adair Co., Inc., in 1959.

Red Adair co. has helped in controlling many offshore blowouts, including;

The 1968 American film, "Hellfighters" which starred John Wayne, is about a group of oil well firefighters based loosely on the life of Red Adair. Adair, "Boots" Hansen, and "Coots" Matthews, served as technical advisers on the film.

In 1994, Adair retired and sold his company to Global Industries. Management of Adair's company left and created International Well Control (IWC). In 1997, they would buy the company Boots & Coots International Well Control, Inc., which was founded by two former lieutenants of Red Adair in 1978.

Methods of quenching blowouts

Subsea Well Containment

After the Deepwater Horizon blowout, the offshore industry collaborated with government regulators to develop a framework to respond to future subsea incidents. As a result, all energy companies operating in the deep-water U.S. Gulf of Mexico must submit an OPA 90 required Oil Spill Response Plan with the addition of a Regional Containment Demonstration Plan prior to any drilling activity.[29] In the event of a subsea blowout, these plans are immediately activated, drawing on some of the equipment and processes effectively used to contain the Deepwater Horizon well as well as others that have been developed in its aftermath.

In order to regain control of a subsea well, the Responsible Party would first secure the safety of all personnel on board the rig and then begin a detailed evaluation of the incident site. Remotely operated underwater vehicles (ROVs) would be dispatched to inspect the condition of the wellhead, Blowout Preventer (BOP) and other subsea well equipment. The debris removal process would begin immediately to provide clear access for a capping stack.

Once lowered and latched on the wellhead, a capping stack uses stored hydraulic pressure to close a hydraulic ram and stop the flow of hydrocarbons.[30] If shutting in the well could introduce unstable geological conditions in the wellbore, a cap and flow procedure would be used to contain hydrocarbons and safely transport them to a surface vessel.[31]

The Responsible Party works in collaboration with BSEE and the United States Coast Guard to oversee response efforts, including source control, recovering discharged oil and mitigating environmental impact.[32]

Several not-for-profit organizations provide a solution to effectively contain a subsea blowout. HWCG LLC and Marine Well Containment Company operate within the U.S. Gulf of Mexico[33] waters, while cooperatives like Oil Spill Response Limited offer support for international operations.

Use of nuclear explosions

On Sep. 30, 1966 the Soviet Union in Urta-Bulak, an area about 80 kilometers from Bukhara, Uzbekistan, experienced blowouts on five natural gas wells. It was claimed in Komsomoloskaya Pravda that after years of burning uncontrollably they were able to stop them entirely.[34] The Soviets lowered a specially made 30 kiloton nuclear bomb into a 6 kilometres (20,000 ft) borehole drilled 25 to 50 metres (82 to 164 ft) away from the original (rapidly leaking) well. A nuclear explosive was deemed necessary because conventional explosive both lacked the necessary power and would also require a great deal more space underground. When the bomb was set off, it proceeded to crush the original pipe that was carrying the gas from the deep reservoir to the surface, as well as to glassify all the surrounding rock. This caused the leak and fire at the surface to cease within approximately one minute of the explosion, and proved over the years to have been a permanent solution. A second attempt on a similar well was not as successful and other tests were for such experiments as oil extraction enhancement (Stavropol, 1969) and the creation of gas storage reservoirs (Orenburg, 1970).[35]

Notable offshore well blowouts

Data from industry information.[1][36]

Year Rig Name Rig Owner Type Damage / details
1955 S-44 Chevron Corporation Sub Recessed pontoons Blowout and fire. Returned to service.
1959 C. T. Thornton Reading & Bates Jackup Blowout and fire damage.
1964 C. P. Baker Reading & Bates Drill barge Blowout in Gulf of Mexico, vessel capsized, 22 killed.
1965 Trion Royal Dutch Shell Jackup Destroyed by blowout.
1965 Paguro SNAM Jackup Destroyed by blowout and fire.
1968 Little Bob Coral Jackup Blowout and fire, killed 7.
1969 Wodeco III Floor drilling Drilling barge Blowout
1969 Sedco 135G Sedco Inc Semi-submersible Blowout damage
1969 Rimrick Tidelands ODECO Submersible Blowout in Gulf of Mexico
1970 Stormdrill III Storm Drilling Jackup Blowout and fire damage.
1970 Discoverer III Offshore Co. Drillship Blowout (S. China Seas)
1971 Big John Atwood Oceanics Drill barge Blowout and fire.
1971 Wodeco II Floor Drilling Drill barge Blowout and fire off Peru, 7 killed.
1972 J. Storm II Marine Drilling Co. Jackup Blowout in Gulf of Mexico
1972 M. G. Hulme Reading & Bates Jackup Blowout and capsize in Java Sea.
1972 Rig 20 Transworld Drilling Jackup Blowout in Gulf of Martaban.
1973 Mariner I Sante Fe Drilling Semi-sub Blowout off Trinidad, 3 killed.
1975 Mariner II Sante Fe Drilling Semi-submersible Lost BOP during blowout.
1975 J. Storm II Marine Drilling Co. Jackup Blowout in Gulf of Mexico.
1976 Petrobras III Petrobras Jackup No info.
1976 W. D. Kent Reading & Bates Jackup Damage while drilling relief well.
1977 Maersk Explorer Maersk Drilling Jackup Blowout and fire in North Sea
1977 Ekofisk Bravo Phillips Petroleum Platform Blowout during well workover.[37]
1978 Scan Bay Scan Drilling Jackup Blowout and fire in the Persion Gulf.
1979 Salenergy II Salen Offshore Jackup Blowout in Gulf of Mexico
1979 Sedco 135F Sedco Drilling Semi-submersible Blowout and fire in Bay of Campeche Ixtoc I well.[37]
1980 Sedco 135G Sedco Drilling Semi-submersible Blowout and fire of Nigeria.
1980 Discoverer 534 Offshore Co. Drillship Gas escape caught fire.
1980 Ron Tappmeyer Reading & Bates Jackup Blowout in Persian Gulf, 5 killed.
1980 Nanhai II Peoples Republic of China Jackup Blowout of Hainan Island.
1980 Maersk Endurer Maersk Drilling Jackup Blowout in Red Sea, 2 killed.
1980 Ocean King ODECO Jackup Blowout and fire in Gulf of Mexico, 5 killed.[38]
1980 Marlin 14 Marlin Drilling Jackup Blowout in Gulf of Mexico
1981 Penrod 50 Penrod Drilling Submersible Blowout and fire in Gulf of Mexico.
1985 West Vanguard Smedvig Semi-submersible Shallow gas blowout and fire in Norwegian sea, 1 fatality.
1981 Petromar V Petromar Drillship Gas blowout and capsize in S. China seas.
1983 Bull Run Atwood Oceanics Tender Oil and gas blowout Dubai, 3 fatalities.
1988 Ocean Odyssey Diamond Offshore Drilling Semi-submersible Gas blowout at BOP and fire in the UK North Sea, 1 killed.
1988 PCE-1 Petrobras Jackup Blowout at Petrobras PCE-1 (Brazil) in April 24. Fire burned for 31 days. No fatalities.[39]
1989 Al Baz Sante Fe Jackup Shallow gas blowout and fire in Nigeria, 5 killed.[40]
1993 M. Naqib Khalid Naqib Co. Naqib Drilling fire and explosion. Returned to service.
1993 Actinia Transocean Semi-submersible Sub-sea blowout in Vietnam. .[41]
2001 Ensco 51 Ensco Jackup Gas blowout and fire, Gulf of Mexico, no casualties[42]
2002 Arabdrill 19 Arabian Drilling Co. Jackup Structural collapse, blowout, fire and sinking.[43]
2004 Adriatic IV Global Sante Fe Jackup Blowout and fire at Temsah platform, Mediterranean Sea[44]
2007 Usumacinta PEMEX Jackup Storm forced rig to move, causing well blowout on Kab 101 platform, 22 killed.[45]
2009 West Atlas / Montara Seadrill Jackup / Platform Blowout and fire on rig and platform in Australia.[46]
2010 Deepwater Horizon Transocean Semi-submersible Blowout and fire on the rig, subsea well blowout, killed 11 in explosion.
2010 Vermilion Block 380 Mariner Energy Platform Blowout and fire, 13 survivors, 1 injured.[47][48]
2012 KS Endeavour KS Energy Services Jack-Up Blowout and fire on the rig, collapsed, killed 2 in explosion.

See also


  1. ^ a b c d e 'All About Blowout', R. Westergaard, Norwegian Oil Review, 1987 ISBN 82-991533-0-1
  2. ^ a b
  3. ^ Walsh, Bryan (2010-05-19). "Gulf Oil Spill: Scientists Escalate Environmental Warnings". Time. Retrieved June 2010. 
  4. ^
  5. ^
  6. ^
  7. ^ Douglass, Ben (1878). "Chapter XVI". History of Wayne County, Ohio, from the Days of the First Settlers to the Present Time. Indianapolis, Ind.: Robert Douglass, Publisher. pp. 233–235.  
  8. ^ "The Shaw Gusher". The Village of Oil Springs. Retrieved 20111-02-23. 
  9. ^
  10. ^
  11. ^
  12. ^
  13. ^
  14. ^
  15. ^
  16. ^
  17. ^ Christopher Pala (2001-10-23). "Kazakhstan Field's Riches Come With a Price" 82 (715). The St. Petersburg Times. Retrieved 2009-10-12. 
  18. ^ "Oil estimate raised to 35,000-60,000 barrels a day". CNN. 2010-06-15. Retrieved 2010-06-15. 
  19. ^ Grace, R: Blowout and Well Control Handbook, page 42. Gulf Professional Publishing, 2003
  20. ^
  21. ^ , July 1934Popular Mechanics"Wild Oil Well Tamed by Scientific Trick"
  22. ^ "How Does Subsea Well Containment and Incident Response Work?". Rigzone. 
  23. ^ "Drilling Blowout Preventers". United States Department of Labor. 
  24. ^ "NTL No. 2010-N10". US Department of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement. 
  25. ^ "Macondo Prospect, Gulf of Mexico, United States of America". Offshore Technology. 
  26. ^ "HWCG Expands Capabilities to Minimize Potential Impact of a Deepwater Incident". 
  27. ^ a b Boots & Coots History Page :
  28. ^ Red Adair website
  29. ^ "Guidance to Owners and Operators of Offshore Facilities Seaward of the Coast Line Concerning Regional Oil Spill Response Plans (NTL No. 2012-N06)" (PDF). Bureau of Safety and Environmental Enforcement. 
  30. ^ Madrid, Mauricio; Matson, Anthony (2014). "How Offshore Capping Stacks Work" (PDF). Society of Petroleum Engineers: The Way Ahead 10 (1). 
  31. ^ "How Does Subsea Well Containment and Incident Response Work?". Rigzone. 
  32. ^ "Memoranda of Agreement Between the Bureau of Safety and Environmental Enforcment and U.S. Coast Guard (MOA: OCS-03)". BSEE/USCG. 
  33. ^ "Deepwater Horizon Spurs Development of Spill Prevention Systems". Rigzone. April 20, 2011. 
  34. ^ Link to and translation of article in Komsomoloskaya Pravda regarding the use of nuclear weapons by the Russians to plug oil leaks (
  35. ^ YouTube - An Atomic Bomb Will Stop the Oil Leak
  36. ^ Rig disaster Website :
  37. ^ a b Oil Rig Disasters Website :
  38. ^
  39. ^
  40. ^ Rig Disaster Website :
  41. ^
  42. ^ Oil Rig Disasters website :
  43. ^ Oil Rig Disasters Website :
  44. ^ Oil Rig Disasters Website :
  45. ^ Usumacinta website :
  46. ^ [2], ABC
  47. ^ September 2 oil rig explosion, CNN
  48. ^ New oil rig explosion in Gulf of Mexico WFRV

External links

  • San Joaquin Geological Society article on famous Californian gushers
  • "Blowout Control, Part 10 - Surface Intervention Methods". Retrieved 2010-06-19. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.