World Library  
Flag as Inappropriate
Email this Article

Branched-chain amino acid

Article Id: WHEBN0003161549
Reproduction Date:

Title: Branched-chain amino acid  
Author: World Heritage Encyclopedia
Language: English
Subject: Branched-chain amino acids, WikiProject Academic Journals/Journals cited by Wikipedia/N25, Whey protein isolate, Ketogenic amino acid, BCA
Collection: Branched-Chain Amino Acids
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Branched-chain amino acid

A branched-chain amino acid (BCAA) is an amino acid having aliphatic side-chains with a branch (a central carbon atom bound to three or more carbon atoms). Among the proteinogenic amino acids, there are three BCAAs: leucine, isoleucine and valine.[1] Non-proteinogenic BCAAs include norvaline and 2-aminoisobutyric acid.

The three proteinogenic BCAAs are among the nine essential amino acids for humans, accounting for 35% of the essential amino acids in muscle proteins and 40% of the preformed amino acids required by mammals.[2]

Contents

  • Research 1
  • Degradation 2
  • See also 3
  • References 4
  • Further reading 5
  • External links 6

Research

Dietary BCAA supplementation has been used clinically to aid in the recovery of burn victims. A 2006 paper suggests that the concept of nutrition supplemented with all BCAAs for burns, trauma, and sepsis should be abandoned for a more promising leucine-only-supplemented nutrition that requires further evaluation. [3]

Dietary BCAAs have been used in an attempt to treat some cases of hepatic encephalopathy,[4] but BCAA provides no benefit for this condition.[5]

Cota et al.[6] demonstrated in 2006 that BCAAs, particularly leucine, also affect the mTOR pathway in rats, signaling two regions of their brains.

Degradation

Degradation of branched-chain amino acids involves the branched-chain alpha-keto acid dehydrogenase complex (BCKDH). A deficiency of this complex leads to a buildup of the branched-chain amino acids (leucine, isoleucine, and valine) and their toxic by-products in the blood and urine, giving the condition the name maple syrup urine disease.

The BCKDH complex converts branched-chain amino acids into Acyl-CoA derivatives, which after subsequent reactions are converted either into acetyl-CoA or succinyl-CoA that enter the citric acid cycle.[7]

Enzymes involved are branched chain aminotransferase and 3-methyl-2-oxobutanoate dehydrogenase.

BCAA pathway

See also

References

  1. ^ Sowers, Strakie. "A Primer On Branched Chain Amino Acids" (PDF). Huntington College of Health Sciences. Retrieved 22 March 2011. 
  2. ^ Shimomura Y, Murakami T, Naoya Nakai N, Nagasaki M, Harris RA (2004). "Exercise Promotes BCAA Catabolism: Effects of BCAA Supplementation on Skeletal Muscle during Exercise". J. Nutr. 134 (6): 1583S–1587S. Retrieved 22 March 2011. 
  3. ^ De Bandt JP; Cynober L (2006). "Therapeutic use of branched-chain amino acids in burn, trauma, and sepsis". J. Nutr. 1 Suppl 136 (30): 8S–13S. Retrieved 22 March 2011. 
  4. ^ Chadalavada R, Sappati Biyyani RS, Maxwell J, Mullen K. (2010). "Nutrition in hepatic encephalopathy". Nutr Clin Pract. 25 (3): 257–64.  
  5. ^ Als-Nielsen B, Koretz RL, Kjaergard LL, Gluud C (2003). "Branched-chain amino acids for hepatic encephalopathy". Cochrane Database Syst Rev (Systematic review) (2): CD001939.  
  6. ^ Abstract on sciencemag.org
  7. ^ Sears DD, Hsiao G, Hsiao A, Yu JG, Courtney CH, Ofrecio JM, Chapman J, Subramaniam S (2009). "Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization". Proc. Nat. Acad. Sci. USA 106 (44): 18745–18750.  

Further reading

  • Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zierath JR, Blomstrand E (2004). "Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise". Am. J. Physiol. Endocrinol. Metab. 287 (1): E1–7.  
  • Blomstrand E, Eliasson J, Karlsson HK, Köhnke R (2006). "Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise". J. Nutr. 136 (1 Suppl): 269S–73S.  
  • Norton LE, Layman DK (2006). "Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise". J. Nutr. 136 (2): 533S–537S.  

External links

  • Branched-chain amino acids at the US National Library of Medicine Medical Subject Headings (MeSH)
  • branched-chain amino acid degradation pathway
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.