World Library  
Flag as Inappropriate
Email this Article

CERN Axion Solar Telescope

Article Id: WHEBN0001217124
Reproduction Date:

Title: CERN Axion Solar Telescope  
Author: World Heritage Encyclopedia
Language: English
Subject: CERN, High energy particle telescopes, CAST, Engin Arık, PVLAS
Collection: Cern, Cern Experiments, Experiments for Dark Matter Search, High Energy Particle Telescopes, Solar Telescopes
Publisher: World Heritage Encyclopedia

CERN Axion Solar Telescope

A warehouse interior containing a long blue cylinder surrounded by scaffolding and plumbing.
CAST. The telescope magnet (blue) pivots about the right-hand side, while the yellow gantry on the left of the picture rolls along a circular track in the floor and raises and lowers the left-hand side to track the sun.

The CERN Axion Solar Telescope (CAST) is an experiment in astroparticle physics to search for axions originating from the Sun. The experiment, sited at CERN in Switzerland, came online in 2002 with the first data-taking run starting in May 2003. The successful detection of solar axions would constitute a major discovery in particle physics, and would also open up a brand new window on the astrophysics of the solar core.

If the axions exist, they may be produced in the Sun's core when X-rays scatter off electrons and protons in the presence of strong electric fields. The experimental setup is built around a 9.26 m long decommissioned test magnet for the LHC capable of producing a field of up to 9.5 T. This strong magnetic field is expected to convert solar axions back into X-rays for subsequent detection by X-ray detectors. The telescope observes the Sun for about 1.5 hours at sunrise and another 1.5 hours at sunset each day. The remaining 21 hours, with the instrument pointing away from the Sun, are spent measuring background axion levels.

CAST began operation in 2003 searching for axions up to 0.02 eV. In 2005, Helium-4 was added to the magnet, extending sensitivity to masses up to 0.39 eV, then Helium-3 was used during 2008–2011 for masses up to 1.15 eV. CAST then ran with vacuum again searching for axions below 0.02 eV.

As of 2014, CAST has not turned up definitive evidence for solar axions. It has considerably narrowed down the range of parameters where these elusive particles may exist. CAST has set significant limits on axion coupling to electrons[1] and photons.[2]


  1. ^ Barth, K.; Belov, A.; Beltran, B.; Bräuninger, H.; Carmona, J.M.; Collar, J.I.; Dafni, T.; Davenport, M.; Di Lella, L.; Eleftheriadis, C.; Englhauser, J.; Fanourakis, G.; Ferrer-Ribas, E.; Fischer, H.; Franz, J.; Friedrich, P.; Galán, J.; García, J.A.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gómez, H.; Hasinoff, M.D.; Heinsius, F.H.; Hoffmann, D.H.H.; Irastorza, I.G.; Jacoby, J.; Jakovčić, K.; Kang, D.; Königsmann, K.; Kotthaus, R.; Kousouris, K.; Krčmar, M.; Kuster, M.; Lakić, B.; Liolios, A.; Ljubičić, A.; Lutz, G.; Luzón, G.; Miller, D.W.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Redondo, J.; Riege, H.; Rodríguez, A.; Ruz, J.; Savvidis, I.; Semertzidis, Y.; Stewart, L.; Van Bibber, K.; Vieira, J.D.; Villar, J.A.; Vogel, J.K.; Walckiers, L.; Zioutas, K. (9 May 2013). "CAST constraints on the axion-electron coupling". Journal of Cosmology and Astroparticle Physics 2013 (05): 010–010.  
  2. ^ Arik, M.; Aune, S.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Collar, J.I.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Ezer, C.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J.A.; Gardikiotis, A.; Gazis, E.N.; Geralis, T.; Giomataris, I.; Gninenko, S.; Gómez, H.; Gruber, E.; Guthörl, T.; Hartmann, R.; Haug, F.; Hasinoff, M.D.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, I.G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kuster, M.; Lakić, B.; Laurent, J.M.; Liolios, A.; Ljubičić, A.; Lozza, V.; Lutz, G.; Luzón, G.; Morales, J.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Rashba, T.; Riege, H.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Silva, P.S.; Solanki, S.K.; Stewart, L.; Tomás, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.A.; Vogel, J.K.; Yildiz, S.C.; Zioutas, K. (23 December 2011). He Buffer Gas"3"Search for Sub-eV Mass Solar Axions by the CERN Axion Solar Telescope with (PDF). Physical Review Letters 107 (26): 261302–1–261302–4.  

External links

  • November 24, 2004 news article by
  • CAST Experiment
  • CAST at TUD
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.