World Library  
Flag as Inappropriate
Email this Article

Cepstrum

Article Id: WHEBN0000046956
Reproduction Date:

Title: Cepstrum  
Author: World Heritage Encyclopedia
Language: English
Subject: Audio time-scale/pitch modification, Digital signal processing, Speech recognition, List of statistics articles
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Cepstrum

A cepstrum is the result of taking the Inverse Fourier transform (IFT) of the logarithm of the estimated spectrum of a signal. There is a complex cepstrum, a real cepstrum, a power cepstrum, and phase cepstrum. The power cepstrum in particular finds applications in the analysis of human speech.

The name "cepstrum" was derived by reversing the first four letters of "spectrum". Operations on cepstra are labelled quefrency analysis, liftering, or cepstral analysis.

Origin and definition

The power cepstrum was defined in a 1963 paper by Bogert et al.[1] The power cepstrum of a signal is defined as the squared magnitude of the inverse Fourier transform of the logarithm of the squared magnitude of the Fourier transform of a signal.[2]

power cepstrum of signal =\left|\mathcal{F}^{-1}\left\{\mbox{log}(\left|\mathcal{F}\left\{ f(t) \right\}\right|^2)\right\}\right|^2

A short-time cepstrum analysis was proposed by Schroeder and Noll for application to pitch determination of human speech.[3][4][5]

The complex cepstrum was defined by Oppenheim in his development of homomorphic system theory.[6] and is defined as the Inverse Fourier transform of the logarithm (with unwrapped phase) of the Fourier transform of the signal. This is sometimes called the spectrum of a spectrum.

complex cepstrum of signal IFT(log(FT(the signal))+jm) (where m is the integer required to properly unwrap the angle or imaginary part of the complex log function)

The real cepstrum uses the logarithm function defined for real values. The real cepstrum is related to the power via the relationship (4 * real cepstrum)^2 = power cepstrum, and is related to the complex cepstrum as real cepstrum = 0.5*(complex cepstrum + time reversal of complex cepstrum).

Steps in forming cepstrum from time history

The complex cepstrum uses the complex logarithm function defined for complex values. The phase cepstrum is related to the complex cepstrum as phase spectrum = (complex cepstrum - time reversal of complex cepstrum).^2

The complex cepstrum holds information about magnitude and phase of the initial spectrum, allowing the reconstruction of the signal. The real cepstrum uses only the information of the magnitude of the spectrum.

Many texts define the process as FT → abs() → log → IFT, i.e., that the cepstrum is the "inverse Fourier transform of the log-magnitude Fourier spectrum".[7][8]

The kepstrum, which stands for "Kolmogorov equation power series time response", is similar to the cepstrum and has the same relation to it as expected value has to statistical average, i.e. cepstrum is the empirically measured quantity while kepstrum is the theoretical quantity.[9][10]

Applications

The cepstrum can be seen as information about rate of change in the different spectrum bands. It was originally invented for characterizing the seismic echoes resulting from earthquakes and bomb explosions. It has also been used to determine the fundamental frequency of human speech and to analyze radar signal returns. Cepstrum pitch determination is particularly effective because the effects of the vocal excitation (pitch) and vocal tract (formants) are additive in the logarithm of the power spectrum and thus clearly separate.[5]

The autocepstrum is defined as the cepstrum of the autocorrelation. The autocepstrum is more accurate than the cepstrum in the analysis of data with echoes.

The cepstrum is a representation used in homomorphic signal processing, to convert signals (such as a source and filter) combined by convolution into sums of their cepstra, for linear separation. In particular, the power cepstrum is often used as a feature vector for representing the human voice and musical signals. For these applications, the spectrum is usually first transformed using the mel scale. The result is called the mel-frequency cepstrum or MFC (its coefficients are called mel-frequency cepstral coefficients, or MFCCs). It is used for voice identification, pitch detection and much more. The cepstrum is useful in these applications because the low-frequency periodic excitation from the vocal cords and the formant filtering of the vocal tract, which convolve in the time domain and multiply in the frequency domain, are additive and in different regions in the quefrency domain.

Cepstral concepts

The independent variable of a cepstral graph is called the quefrency. The quefrency is a measure of time, though not in the sense of a signal in the time domain. For example, if the sampling rate of an audio signal is 44100 Hz and there is a large peak in the cepstrum whose quefrency is 100 samples, the peak indicates the presence of a pitch that is 44100/100 = 441 Hz. This peak occurs in the cepstrum because the harmonics in the spectrum are periodic, and the period corresponds to the pitch. Note that a pure sine wave should not be used to test the cepstrum for its pitch determination from quefrency as a pure sine wave does not contain any harmonics. Rather, a test signal containing harmonics should be used (such as the sum of at least two sines where the second sine is some harmonic (multiple) of the first sine).

Liftering

Playing further on the anagram theme, a filter that operates on a cepstrum might be called a lifter. A low pass lifter is similar to a low pass filter in the frequency domain. It can be implemented by multiplying by a window in the quefrency domain and when converted back to the frequency domain, resulting in a smoother signal.

Convolution

A very important property of the cepstral domain is that the convolution of two signals can be expressed as the addition of their complex cepstra:

x_1 * x_2 \rightarrow x'_1 + x'_2

References

  1. ^ B. P. Bogert, M. J. R. Healy, and J. W. Tukey: "The Quefrency Alanysis of Time Series for Echoes: Cepstrum, Pseudo Autocovariance, Cross-Cepstrum and Saphe Cracking". Proceedings of the Symposium on Time Series Analysis (M. Rosenblatt, Ed) Chapter 15, 209-243. New York: Wiley, 1963.
  2. ^ Norton, Michael Peter; Karczub, Denis (November 17, 2003). Fundamentals of Noise and Vibration Analysis for Engineers. Cambridge University Press.  
  3. ^ A. Michael Noll and Manfred R. Schroeder, "Short-Time 'Cepstrum' Pitch Detection," (abstract) Journal of the Acoustical Society of America, Vol. 36, No. 5, p. 1030
  4. ^ A. Michael Noll (1964), “Short-Time Spectrum and Cepstrum Techniques for Vocal-Pitch Detection,” Journal of the Acoustical Society of America, Vol. 36, No. 2, pp. 296-302.
  5. ^ a b A. Michael Noll (1967), “Cepstrum Pitch Determination,” Journal of the Acoustical Society of America, Vol. 41, No. 2, pp. 293-309.
  6. ^ A. V. Oppenheim, "Superposition in a class of nonlinear systems" (Ph.D. dissertation), Res. Lab. Electronics, Massachusetts Institute of Technology, Cambridge, MA, 1965.
  7. ^ Curtis Roads (February 27, 1996). The computer music tutorial. MIT Press.  
  8. ^ John G. Proakis; Dimitris G. Manolakis (2007). Digital signal processing. Pearson Prentice Hall.  
  9. ^ "Use of the kepstrum in signal analysis", M.T.Silvia and W.A.Robinson, Geoexploration, Volume 16, Issues 1-2, April 1978, Pages 55-73.
  10. ^ "A kepstrum approach to filtering, smoothing and prediction with application to speech enhancement",T.J.Moir and J.F.Barrett,Proc Royal Society A,Vol.459,2003, pp.2957-2976

Further reading

  • D. G. Childers, D. P. Skinner, R. C. Kemerait, "The Cepstrum: A Guide to Processing," Proceedings of the IEEE, Vol. 65, No. 10, October 1977, pp. 1428–1443.
  • "Speech Signal Analysis"
  • "Speech analysis: Cepstral analysis vs. LPC www.advsolned.com"
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.