World Library  
Flag as Inappropriate
Email this Article

Chemical stability

Article Id: WHEBN0015184877
Reproduction Date:

Title: Chemical stability  
Author: World Heritage Encyclopedia
Language: English
Subject: Physical chemistry, Reactivity (chemistry), Carbon–fluorine bond, Chemical equilibria, Latte art
Collection: Materials Science, Physical Chemistry
Publisher: World Heritage Encyclopedia

Chemical stability

Chemical stability when used in the technical sense in chemistry, means thermodynamic stability of a chemical system.[1]

Thermodynamic stability occurs when a system is in its lowest energy state, or chemical equilibrium with its environment. This may be a dynamic equilibrium, where individual atoms or molecules change form, but their overall number in a particular form is conserved. This type of chemical thermodynamic equilibrium will persist indefinitely unless the system is changed. Chemical systems might include changes in the phase of matter or a set of chemical reactions.

State A is said to be more thermodynamically stable than state B if the Gibbs energy of the change from A to B is positive.


  • Chemical stability versus reactivity 1
  • Outside chemistry 2
  • See also 3
  • References 4

Chemical stability versus reactivity

Thermodynamic stability applies to a particular system. The reactivity of a chemical substance is a description of how it might react across a variety of potential chemical systems and, for a given system, how fast such a reaction could proceed.

Chemical substances or states can persist indefinitely even though they are not in their lowest energy state if they experience metastability - a state which is stable only if not disturbed too much. A substance (or state) might also be termed "kinetically persistent" if it is changing relatively slowly (and thus is not at thermodynamic equilibrium, but is observed anyway). Metastable and kinetically persistent species or systems are not considered truly stable in chemistry. Therefore, the term chemically stable should not be used by chemists as a synonym of unreactive because it confuses thermodynamic and kinetic concepts. On the other hand, highly chemically unstable species tend to undergo exothermic unimolar decompositions at high rates. Thus, high chemical instability may sometimes parallel unimolar decompositions at high rates.[2]

Outside chemistry

In everyday language, and often in materials science, a chemical substance is said to be "stable" if it is not particularly reactive in the environment or during normal use, and retains its useful properties on the timescale of its expected usefulness. In particular, the usefulness is retained in the presence of air, moisture or heat, and under the expected conditions of application. In this meaning, the material is said to be unstable if it can corrode, decompose, polymerize, burn or explode under the conditions of anticipated use or normal environmental conditions.

See also


  1. ^ Definition of Stable in IUPAC Gold Book
  2. ^ Definitions of Unstable in IUPAC Gold Book
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.