World Library  
Flag as Inappropriate
Email this Article

Chipseal

Article Id: WHEBN0006005240
Reproduction Date:

Title: Chipseal  
Author: World Heritage Encyclopedia
Language: English
Subject: Road, Momote Airport, Stone, Backroad, Road surface
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Chipseal

A chipseal road in the United States

Chipseal (also chip seal) is a pavement surface treatment that combines one or more layer(s) of asphalt with one or more layer(s) of fine aggregate. In the United States, chipseals are typically used on rural roads carrying lower traffic volumes, and the process is often referred to as "asphaltic surface treatment". In Australia and New Zealand chipsealing is used on a larger percentage of roads, both rural and urban.[1] This type of surface has a variety of other names including "tar and chip", "sprayed seal"[2] or "surface dressing".[3]

Uses

Chipsealing is cheaper than resurfacing an asphalt concrete or a Portland cement concrete pavement, but not as long-lasting. In some states of the United States, chipsealing is used in conjunction with new road construction to make the road bed more durable and longer lasting.

A chipseal road in the United Kingdom

Installation

Chipseals are constructed by evenly distributing a thin base of hot bitumen or asphalt onto an existing pavement and then embedding finely graded aggregate into it. The aggregate is evenly distributed over the seal spray, then rolled into a smooth pavement surface. A chip-seal-surfaced pavement can optionally be sealed with a top layer, which is referred to as a fog seal or enrichment.

The introduction of polymer-modified bitumen and emulsion binder has increased chipseal's ability to prevent crack reflection and improve stone retention by improving the properties of the bitumen binder. Newer techniques use asphalt volatile organic compounds (VOCs) due to the lower solvent content. New methods also utilize cross linking styrene acrylic polymers which also provide quality water resistance. Chips precoated with about one percent bitumen have been used successfully to minimize aggregate loss and to give the surface a black look.

It can keep good pavement in good condition by sealing out water, but provides no structural strength and will repair only minor cracks. While the small stones used as surface yield a relatively even surface without the edges of patches, it also results in a very rough surface that leads to louder rolling noise from automobile wheels.

Although chipseal is an effective low-cost way to repair road, it has some drawbacks. Loose crushed stone is often left on the surface, owing to underapplication of bitumen or overapplication of stone. If not removed, this can cause safety and environmental problems such as cracked windshields, chipped paint, loss-of-control crashes (especially for motorcyclists, bicyclists and small trucks), and deposition of foreign material into drainage courses. Therefore, it is very important to sweep the road after the emulsion sets. As mentioned earlier,this problem can be minimized by using chips precoated with bitumen. Overapplication of emulsion can lead to bleeding, a condition where the excess asphalt rises to the surface, creating a very smooth surface that is very slippery when wet and bubbling in the hotter summer months. As cars drive over it the tires kick up this tarry substance on to the side of the car. It can only be cleaned off with a solvent remover or diesel fuel.

Noise and vibration effects

The rough wearing surface of the chipseal generates more roadway noise at any operating speed than do typical asphalt or concrete surfaces. This typically is not a major concern at very low operating speeds; moreover, chipseals are typically used on low volume rural and urban roadways. These sound intensities increase with higher vehicle speeds.[4] There is a considerable range in acoustical intensities produced depending upon the specific tire tread design and its interaction with the roadway surface type.

The rough surface causes noticeable increases in vibration and rolling resistance for bicyclists, and increased tire wear in all types of tires.

Vehicle speed can affect the set up time with chipseal. Shortly after construction (depending on weather conditions) the set speed for chipseal is 10–15 miles per hour (16–24 km/h) for the first 24–48 hours after construction.

See also

Bituminous surface

References

  1. ^
  2. ^ Sprayed Seal, Local Government & Municipal Knowledge Base, accessed January 29, 2010
  3. ^
  4. ^

External links

  • City of Grand Junction, CO page on Chipseal
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.