World Library  
Flag as Inappropriate
Email this Article

Class (philosophy)

Article Id: WHEBN0000358276
Reproduction Date:

Title: Class (philosophy)  
Author: World Heritage Encyclopedia
Language: English
Subject: Philosophy of language, Categorization, Category of being, Property (philosophy), Concept
Collection: Philosophical Concepts
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Class (philosophy)

In at least one source,[1] a "class" is a set in which an individual member can be recognized in one or both of two ways: a) it is included in an extensional definition of the whole set (a list of set members) b) it matches an intensional definition of one set member. By contrast, a "type" is an intensional definition; it is a description that is sufficiently generalized to fit every member of a set.

Philosophers sometimes distinguish classes from types and kinds. We can talk about the class of human beings, just as we can talk about the type (or natural kind), human being, or humanity. How, then, might classes differ from types? One might well think they are not actually different categories of being, but typically, while both are treated as abstract objects, classes are not usually treated as universals, whereas types usually are. Whether natural kinds ought to be considered universals is vexed; see natural kind.

There is, in any case, a difference in how we talk about types or kinds. We say that Socrates is a token of a type, or an instance of the natural kind, human being. But notice that we say instead that Socrates is a member of the class of human beings. We would not say that Socrates is a "member" of the type or kind, human beings. Nor would we say he is a type (or kind) of a class. He is a token (instance) of the type (kind). So the linguistic difference is: types (or kinds) have tokens (or instances); classes, on the other hand, have members.

The concept of a class is similar to the concept a set defined by its members. Here, the class is extensional. If, however, a set is defined intensionally, then it is a set of things that meet some requirement to be a member. Thus, such a set can be seen as creating a type. Note that it also creates a class from the extension of the intensional set. A type always has a corresponding class (though that class might have no members), but a class does not necessarily have a corresponding type.

References

  1. ^ "From Aristotle to EA: a type theory for EA"

External links

  • "Class" as analytical term in philosophy
  • "Class" as an analytical feature of any Category or Categorical term, in the language of deductive reasoning
  • "Class" as an aspect of logic, and particularly Bertrand Russell"s Principia Mathematica
  • "From Aristotle to EA: a type theory for EA" quoted 26/10/2014.


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.