World Library  
Flag as Inappropriate
Email this Article

Connectomics

Article Id: WHEBN0018314899
Reproduction Date:

Title: Connectomics  
Author: World Heritage Encyclopedia
Language: English
Subject: Neuroscience, Brainbow, Neurometrics, Dynamic causal modelling, Genomics
Collection: Medical Terminology, Nervous System, Neurons, Omics
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Connectomics

Connectomics is the production and study of nervous system, typically its brain or eye. Because these structures are extremely complex, methods within this field use a high-throughput application of neural imaging and histological techniques in order to increase the speed, efficiency, and resolution of maps of the multitude of neural connections in a nervous system. While the principal focus of such a project is the brain, any neural connections could theoretically be mapped by connectomics, including, for example, neuromuscular junctions.

Contents

  • Tools 1
  • Model Systems 2
  • Applications 3
  • Criticism 4
  • Comparison to genomics 5
  • See also 6
  • References 7
  • Further reading 8
  • External links 9

Tools

One of the main tools used for connectomics research at the macroscale level is diffusion MRI.[1] The main tool for connectomics research at the microscale level is 3D electron microscopy.[2] To see one of the first micro-connectomes at full-resolution, visit the Open Connectome Project, which is hosting several connectome datasets, including the 12TB dataset from Bock et al. (2011).

Model Systems

Aside from the human brain, some of the model systems used for connectomics research are the mouse,[3] the fruit fly,[4] the nematode C. elegans,[5][6] and the barn owl.[7]

Applications

By comparing diseased connectome and healthy connectomes, we should gain insight into certain psychopathologies, such as neuropathic pain, and potential therapies for them. Generally, the field of neuroscience would benefit from standardization and raw data. For example, connectome maps can be used to inform computational models of whole-brain dynamics.[8] Current neural networks mostly rely on probabilistic representations of connectivity patterns.[9] Connectograms (circular diagrams of connectomics) have been used in traumatic brain injury cases to document the extent of damage to neural networks.[10][11]

Criticism

The use of the word -omics to describe this system has been criticized.[12][13] The coinage of the word is seen in two sources, in an article by Olaf Sporns[14] and a PhD thesis by Patric Hagmann.[15]

Others have criticized attempts towards a microscale connectome, arguing that we don't have enough knowledge about where to look for insights, or that it cannot be completed within a realistic time frame.[16]

Comparison to genomics

The human genome project initially faced many of the above criticisms, but was nevertheless completed ahead of schedule and has led to many advances in genetics. Some have argued that analogies can be made between genomics and connectomics, and therefore we should be at least slightly more optimistic about the prospects in connectomics.[17]

See also

References

  1. ^ Wedeen, V.J.; Wang, R.P.; Schmahmann, J.D.; Benner, T.; Tseng, W.Y.I.; Dai, G.; Pandya, D.N.; Hagmann, P. et al. (2008). "Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers". NeuroImage 41 (4): 1267–77.  
  2. ^ Anderson, JR; Jones, BW; Watt, CB; Shaw, MV; Yang, JH; Demill, D; Lauritzen, JS; Lin, Y et al. (2011). "Exploring the retinal connectome". Molecular vision 17: 355–79.  
  3. ^ Bock, Davi D.; Lee, Wei-Chung Allen; Kerlin, Aaron M.; Andermann, Mark L.; Hood, Greg; Wetzel, Arthur W.; Yurgenson, Sergey; Soucy, Edward R. et al. (2011). "Network anatomy and in vivo physiology of visual cortical neurons". Nature 471 (7337): 177–82.  
  4. ^ Chklovskii, Dmitri B; Vitaladevuni, Shiv; Scheffer, Louis K (2010). "Semi-automated reconstruction of neural circuits using electron microscopy". Current Opinion in Neurobiology 20 (5): 667–75.  
  5. ^ Chen, B. L.; Hall, D. H.; Chklovskii, D. B. (2006). "Wiring optimization can relate neuronal structure and function". Proceedings of the National Academy of Sciences 103 (12): 4723–8.  
  6. ^ Perez-Escudero, A.; Rivera-Alba, M.; De Polavieja, G. G. (2009). "Structure of deviations from optimality in biological systems". Proceedings of the National Academy of Sciences 106 (48): 20544–9.  
  7. ^ Pena, JL; Debello, WM (2010). "Auditory processing, plasticity, and learning in the barn owl". ILAR journal 51 (4): 338–52.  
  8. ^ http://www.scholarpedia.org/article/Connectome
  9. ^ Nordlie, Eilen; Gewaltig, Marc-Oliver; Plesser, Hans Ekkehard (2009). Friston, Karl J., ed. "Towards Reproducible Descriptions of Neuronal Network Models". PLoS Computational Biology 5 (8): e1000456.  
  10. ^ Van Horn, John D.; Irimia, A.; Torgerson, C.M.; Chambers, M.C.; Kikinis, R.; Toga, A.W. (2012). "Mapping connectivity damage in the case of Phineas Gage". PLoS ONE 7 (5): e37454.  
  11. ^ Irimia, Andrei; Chambers, M.C., Torgerson, C.M., Filippou, M., Hovda, D.A., Alger, J.R., Gerig, G., Toga, A.W., Vespa, P.M., Kikinis, R., Van Horn, J.D. (6 February 2012). "Patient-tailored connectomics visualization for the assessment of white matter atrophy in traumatic brain injury". Frontiers in Neurotrauma 3: 10.  
  12. ^ "Bad omics word of the day: connectome" Kaboodle.nescent.org. January 31, 2010
  13. ^ Talk:Connectome. Scholarpedia.org.
  14. ^ Sporns, Olaf; Tononi, Giulio; Kötter, Rolf (2005). "The Human Connectome: A Structural Description of the Human Brain". PLoS Computational Biology 1 (4): e42.  
  15. ^ Hagmann, Patric (April 21, 2005). "From Diffusion MRI to Brain Connectomics" (PDF). École Polytechnique Fédérale de Lausanne. Ph.D. Thesis. pp. 1, 107.
  16. ^ Vance, Ashlee (27 December 2010). "Seeking the Connectome, a Mental Map, Slice by Slice". The New York Times. 
  17. ^ Lichtman, J; Sanes, J (2008). "Ome sweet ome: what can the genome tell us about the connectome?". Current Opinion in Neurobiology 18 (3): 346–53.  

Further reading

  • Hagmann, Patric; Cammoun, Leila; Gigandet, Xavier; Meuli, Reto; Honey, Christopher J.; Wedeen, Van J.; Sporns, Olaf (2008). Friston, Karl J., ed. "Mapping the Structural Core of Human Cerebral Cortex". PLoS Biology 6 (7): e159.  

External links

  • Open Connectome Project
  • The Connectome Project at Harvard
  • Connectome Research by EPFL/CHUV, Lausanne, Switzerland
  • The NIH Blueprint for Neuroscience Research
  • TED talk by Sebastian Seung: "I am my connectome".
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.