World Library  
Flag as Inappropriate
Email this Article

Cryogenic Rare Event Search with Superconducting Thermometers

Article Id: WHEBN0017229545
Reproduction Date:

Title: Cryogenic Rare Event Search with Superconducting Thermometers  
Author: World Heritage Encyclopedia
Language: English
Subject: EDELWEISS, Dark matter, Weakly interacting massive particles, Mixed dark matter, Self-interacting dark matter
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Cryogenic Rare Event Search with Superconducting Thermometers

The building housing the CRESST cryostat, located in Hall A of the LNGS deep underground laboratory, Gran Sasso, Italy.

The Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) is a collaboration of European experimental particle physics groups involved in the construction of cryogenic detectors for direct dark matter searches. The participating institutes are the Max-Planck Institut für Physik (Munich), Technische Universität München, Universität Tübingen, University of Oxford (Great Britain) and the Istituto Nazionale di Fisica Nucleare (INFN, Italy).[1]

The CRESST collaboration currently runs an array of cryogenic detectors in the underground laboratory of the Gran Sasso National Laboratory. The modular detectors used by CRESST facilitate discrimination of background radiation events by the simultaneous measurement of phonon and photon signals from scintillating calcium tungstate crystals. By cooling the detectors to temperatures of a few millikelvin, the excellent discrimination and energy resolution of the detectors allows identification of rare particle events.

CRESST-I took data in 2000 using sapphire detectors with tungsten thermometers. CRESST-II uses CaWO4 crystal scintillating calorimeters. It was prototyped in 2004 and had a 47.9 kg-day commissioning run in 2007 and operated 2009 to 2011. Phase 2 has a new CaWO4 crystal with better radiopurity, improved detectors, and significantly reduced background. It began July 2013, to explore excess signals in the prior run.

CRESST-I first detected the alpha decay of tungsten. CRESST-II phase 1 full results were published in 2012.[2] New phase 2 results have been presented on July 2014 [3] with a limit on spin-independent WIMP-nucleon scattering for WIMP masses below 3 GeV/c2.

In 2015 the CRESST detectors were upgraded by a sensitivity factor of 100 allowing dark matter particles with a mass around that of a proton to be detected. .[4]

The EURECA experiment is a planned successor to CRESST, ultimately aiming to run an array of detectors with a total mass of around 1 tonne

References

  1. ^ http://www.cresst.de/people.php
  2. ^
  3. ^ The CRESST Collaboration, Results on low mass WIMPs using an upgraded CRESST-II detector, http://arxiv.org/abs/1407.3146
  4. ^

External links

  • CRESST Official Website
  • CRESST Publication 2004
  • CRESST Publication 2011
  • Gran Sasso National Laboratory

References

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.