World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0005110843
Reproduction Date:

Title: Deamidation  
Author: World Heritage Encyclopedia
Language: English
Subject: Protein primary structure, Post-translational modification, Phosphorylation, Polyglutamylation, Detyrosination
Collection: Substitution Reactions
Publisher: World Heritage Encyclopedia


Deamidation reaction of Asn-Gly (top right) to Asp-Gly (at left) or iso(Asp)-Gly (in green at bottom right).

Deamidation is a chemical reaction in which an biochemistry, the reaction is important in the degradation of proteins because it damages the amide-containing side chains of the amino acids asparagine and glutamine.

In the biochemical deamidation reaction, the side chain of an asparagine attacks the following peptide group (in black at top right of Figure), forming a symmetric succinimide intermediate (in red). The symmetry of the intermediate results in two products of its hydrolysis, either aspartate (in black at left) or in isoaspartate, which is a beta amino acid (in green at bottom right). This process is considered a deamidation because the amide in the asparagine side chain is replaced by a carboxylate group. However, a similar reaction can occur in aspartate side chains, yielding a partial conversion to isoaspartate.

Kinetics of deamidation

Deamidation reactions have been conjectured to be one of the factors that limit the useful lifetime of proteins.

Deamidation proceeds much more quickly if the susceptible amino acid is followed by a small, flexible residue such as glycine whose low steric hindrance leaves the peptide group open for attack. Deamidation reactions also proceed much more quickly at elevated pH (>10) and temperature.


  • Clarke S. (1987) "Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins", Int. J., Peptide Protein Res., 30, 808-821. PMID 3440704
  • Stephenson RC and Clarke S. (1989) "Succinimide Formation from Aspartyl and Asparaginyl Peptides as a Model for the Spontaneous Degradation of Proteins", J. Biol. Chem., 264, 6164-6170. PMID 2703484
  • Robinson NE, Robinson AB. Molecular Clocks: Deamidation of Asparaginyl and Glutaminyl Residues in Peptides and Proteins. Althouse Press: Cave Junction, Ore. OCLC 56978028

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.