World Library  
Flag as Inappropriate
Email this Article

Directional Recoil Identification from Tracks

Article Id: WHEBN0018769542
Reproduction Date:

Title: Directional Recoil Identification from Tracks  
Author: World Heritage Encyclopedia
Language: English
Subject: Dark Matter Time Projection Chamber, Weakly interacting massive particles, ZEPLIN-III, Dark matter, Mixed dark matter
Collection: Experiments for Dark Matter Search
Publisher: World Heritage Encyclopedia

Directional Recoil Identification from Tracks

The DRIFT-IIb Detector removed from the vacuum vessel for maintenance.

The Directional Recoil Identification From Tracks (DRIFT) detector is a low pressure negative ion time projection chamber (NITPC) designed to detect weakly interacting massive particles (WIMPs) - a prime dark matter candidate.[1]

There are currently two DRIFT detectors in operation. DRIFT-IIb, which is located 1100m underground in the Boulby Underground Laboratory at the Boulby Mine in North Yorkshire, England,[2] and DRIFT-IIc, which is located on the surface at Occidental College, Los Angeles, CA, USA.

The DRIFT collaboration ultimately aims to develop and operate an underground array of DRIFT detectors for observing and reconstructing WIMP-induced nuclear recoil tracks with enough precision to provide a signature of the dark matter halo.


  • WIMP Detection 1
  • Detection technology 2
  • Results 3
  • See also 4
  • References 5
  • External links 6

WIMP Detection

There are numerous experiments worldwide attempting to detect the energy deposition that is expected to occur when a WIMP directly collides with an atom of ordinary matter. Ultra sensitive experiments are required to detect the low energy and extremely rare interaction that is predicted to occur between a WIMP and the nucleus of an atom in a target material. The DRIFT detectors vary from the majority of WIMP detectors in their use of a low pressure gas as a target material. The low pressure gas means that an interaction within the detector causes an ionisation track of measurable length compared to the point like interactions seen in detectors with solid or liquid target materials. Such ionisation tracks can be reconstructed in three dimensions to determine not only the type of particle that caused it, but from which direction the particle came. This directional sensitivity has the potential to prove the existence of WIMPs by their distinct directional signature.

Detection technology

Negative ion track formation in the DRIFT detector.

The DRIFT detector's target material is a 1 m3 volume of low pressure carbon disulfide (CS2) gas. It is predicted that WIMPs will occasionally collide with the nucleus of a sulfur or carbon atom in the carbon disulfide gas causing the nucleus to recoil. An energetic recoiling nucleus will ionise gas particles creating a path of free electrons. These free electrons readily attach to the electronegative CS2 molecules creating a track of CS2- ions. A cathode at -34 kV in the center of the gas volume produces a static electric field that causes these negative ions to be drifted, whilst maintaining the track structure, to the MWPC planes at the edges of the detector.


DRIFT-IId published Spin-dependent limits in 2012.[3]

See also


  1. ^ .NASA websiteUniverse 101 Hinshaw, Gary F. (January 29, 2010) Retrieved 2011-09-09.
  2. ^ Boulby Underground Science Facility
  3. ^ Daw, E.; Fox, J.R.; Gauvreau, J.-L.; Ghag, C.; Harmon, L.J.; Gold, M.; Lee, E.R.; Loomba, D.; Miller, E.H.; Murphy, A.StJ.; Paling, S.M.; Landers, J.M.; Pipe, M.; Pushkin, K.; Robinson, M.; Snowden-Ifft, D.P.; Spooner, N.J.C.; Walker, D. (February 2012). "Spin-dependent limits from the DRIFT-IId directional dark matter detector". Astroparticle Physics 35 (7): 397–401.  

External links

  • DRIFT web site
  • DRIFT-I on display at the Science Museum, London
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.