World Library  
Flag as Inappropriate
Email this Article

Discontinuous permafrost

Article Id: WHEBN0001732321
Reproduction Date:

Title: Discontinuous permafrost  
Author: World Heritage Encyclopedia
Language: English
Subject: Taiga
Publisher: World Heritage Encyclopedia

Discontinuous permafrost

This article is about frozen ground. For other uses, see Permafrost (disambiguation).

In geology, permafrost or cryotic soil is soil at or below the freezing point of water 0 °C (32 °F) for two or more years. Most permafrost is located in high latitudes (i.e. land close to the North and South poles), but alpine permafrost may exist at high altitudes in much lower latitudes. Ground ice is not always present, as may be in the case of nonporous bedrock, but it frequently occurs and it may be in amounts exceeding the potential hydraulic saturation of the ground material. Permafrost accounts for 0.022% of total water and exists in 24% of exposed land in the Northern Hemisphere.[1][2]

A global temperature rise of 1.5 °C (2.7 °F) above current levels would be enough to start the melting of permafrost in Siberia, according to one group of scientists.[2]

Extent and manifestations of permafrost

Permafrost is soil and sediment that is frozen more than two consecutive years, while the active layer is the upper part of the soil environment that thaws every summer. In practice, this means that permafrost occurs at an average air temperature of -2°C or colder. Active layer thickness varies with the season, but is 0.3 to 4 meters thick (shallow along the Arctic coast; deep in southern Siberia and the Qinghai-Tibetan Plateau). In the Northern Hemisphere, 24% of the ice-free land area, equivalent to 19 million square kilometer,[3] is more or less influenced by permafrost. Most of this area is found in Siberia, Canada, Alaska and Greenland.

The extent of permafrost varies with the climate. Today, a considerable area of the Arctic is covered by permafrost (including discontinuous permafrost). Overlying permafrost is a thin active layer that seasonally thaws during the summer. Plant life can be supported only within the active layer since growth can occur only in soil that is fully thawed for some part of the year. Thickness of the active layer varies by year and location, but is typically 0.6–4 m (2.0–13.1 ft) thick. In areas of continuous permafrost and harsh winters, the depth of the permafrost can be as much as 1,493 m (4,898 ft) in the northern Lena and Yana River basins in Siberia. Permafrost can also store carbon, both as peat and as methane. The most recent work investigating the permafrost carbon pool size estimates that 1400–1700 Gt of carbon is stored in permafrost soils worldwide.[4] This large carbon pool represents more carbon than currently exists in all living things and twice as much carbon as exists in the atmosphere.

Continuous and discontinuous permafrost

Permafrost typically forms in any climate where the mean annual air temperature is less than the freezing point of water. Exceptions are found in moist-wintered forest climates, such as in Northern Scandinavia and the North-Eastern part of European Russia west of the Urals, where snow acts as an insulating blanket. The bottoms of many glaciers can also be free of permafrost.

Typically, the below-ground temperature varies less from season to season than the air temperature, with temperatures tending to increase with depth. Thus, if the mean annual air temperature is only slightly below 0 °C (32 °F), permafrost will form only in spots that are sheltered—usually with a northerly aspect. This creates what is known as discontinuous permafrost. Usually, permafrost will remain discontinuous in a climate where the mean annual soil surface temperature is between −5 and 0 °C (23 and 32 °F). In the moist-wintered areas mentioned before, there may not be even discontinuous permafrost down to −2 °C (28 °F). Discontinuous permafrost is often further divided into extensive discontinuous permafrost, where permafrost covers between 50 and 90 percent of the landscape and is usually found in areas with mean annual temperatures between −2 and −4 °C (28 and 25 °F), and sporadic permafrost, where permafrost cover is less than 50 percent of the landscape and typically occurs at mean annual temperatures between 0 and −2 °C (32 and 28 °F).

In soil science, the sporadic permafrost zone is abbreviated SPZ and the extensive discontinuous permafrost zone DPZ.

Exceptions occur in un-glaciated Siberia and Alaska where the present depth of permafrost is a relic of climatic conditions during glacial ages where winters were up to 11 °C (20 °F) colder than those of today. At mean annual soil surface temperatures below −5 °C (23 °F) the influence of aspect can never be sufficient to thaw permafrost and a zone of continuous permafrost (abbreviated to CPZ) forms. "Fossil" cold anomalies in the Geothermal gradient in areas where deep permafrost developed during the Pleistocene persist down to several hundred metres. The Suwałki cold anomaly in Poland led to the recognition that similar thermal disturbances related to Pleistocene-Holocene climatic changes are recorded in boreholes throughout Poland.[5]

A line of continuous permafrost in the Northern Hemisphere[6] represents the most southerly border where land is covered by continuous permafrost or glacial ice. The line of continuous permafrost varies around the world northward or southward due to regional climatic changes. In the southern hemisphere, most of the equivalent line would fall within the Southern Ocean if there were land there. Most of the Antarctic continent is overlain by glaciers.

In the Andes along the Atacama Desert permafrost extends down to an altitude of 4,400 metres (14,400 ft) and is continuous above 5,600 metres (18,400 ft).

Time to form deep permafrost

Calculations indicate that the time required to form the deep permafrost underlying Prudhoe Bay, Alaska was 500,740 years.[7][8] This extended over several glacial and interglacial cycles of the Pleistocene and suggests that the present climate of Prudhoe Bay is probably considerably warmer than it has been on average over that period. Such warming over the past 15,000 years is widely accepted.[7] The table to the right shows that the first hundred metres of permafrost forms relatively quickly but that deeper levels take progressively longer.

Time taken for permafrost to reach depth[9]
Time (yr) Permafrost depth
1 4.44 m (14.6 ft)
350 79.9 m (262 ft)
3,500 219.3 m (719 ft)
35,000 461.4 m (1,514 ft)
100,000 567.8 m (1,863 ft)
225,000 626.5 m (2,055 ft)
775,000 687.7 m (2,256 ft)

Patterned ground

Patterned ground is the distinct and often symmetrical geometric shapes formed by ground material in periglacial regions.

Global climate change effects on permafrost extent

Arctic temperatures are expected to increase at roughly twice the global rate.[10] The Intergovernmental Panel on Climate Change (IPCC) will in their fifth report establish scenarios for the future, where the temperature in the Arctic will rise between 1.5 and 2.5°C by 2040 and with 2 to 7.5°C by 2100. Estimates vary on how many tons of greenhouse gases are emitted from thawed permafrost soils. One estimate suggests that 110-231 billion tons of CO2 equivalents (about half from carbon dioxide and the other half from methane) will be emitted by 2040, and 850-1400 billion tons by 2100.[11] This corresponds to an average annual emission rate of 4-8 billion tons of CO2 equivalents in the period 2011-2040and annually 10-16 billion tons of CO2 equivalents in the period 2011-2100 as a result of thawing permafrost. For comparison, the anthropogenic emission of all greenhouse gases in 2010 is approximately 48 billion tons of CO2 equivalents.[12] Release of greenhouse gases from thawed permafrost to the atmosphere may increase global warming.

In Yukon, the zone of continuous permafrost might have moved 100 kilometres (62 mi) poleward since 1899, but accurate records only go back 30 years. It is thought that permafrost thawing could exacerbate global warming by releasing methane and other hydrocarbons, which are powerful greenhouse gases.[13][14][15] It also could encourage erosion because permafrost lends stability to barren Arctic slopes.

At the Last Glacial Maximum, continuous permafrost covered a much greater area than it does today, covering all of ice-free Europe south to about Szeged (southeastern Hungary) and the Sea of Azov (then dry land)[16] and East Asia south to present-day Changchun and Abashiri.[17] In North America, only an extremely narrow belt of permafrost existed south of the ice sheet at about the latitude of New Jersey through southern Iowa and northern Missouri, but permafrost was more extensive in the drier western regions where it extended to the southern border of Idaho and Oregon.[18] In the southern hemisphere, there is some evidence for former permafrost from this period in central Otago and Argentine Patagonia, but was probably discontinuous, and is related to the tundra. Alpine permafrost also occurred in the Drakensberg during glacial maxima above about 3,000 metres (9,840 ft).[19][20]

According to IPCC Fifth Assessment Report there is high confidence that permafrost temperatures have increased in most regions since the early 1980s. Observed warming was up to 3°C in parts of Northern Alaska (early 1980s to mid-2000s) and up to 2°C in parts of the Russian European North (1971–2010).[21]

Permafrost thaw versus melt

The ground can consist of many substrate materials, including bedrock, sediment, organic matter, water or ice. Frozen ground is that which is below the freezing point of water, whether or not water is present in the substrate. Ground ice is not always present, as may be the case with nonporous bedrock, but it frequently occurs and may be present in amounts exceeding the potential hydraulic saturation of the thawed substrate.

By definition, permafrost is ground that remains frozen for two or more years. Since frozen soil, including permafrost, comprises a large percentage of substrate materials other than ice, it thaws rather than melts even as any ice content melts.[22] An analogy is when a freezer door is left open, although the ice in the freezer may change phase to a liquid, the food solids will not experience a phase change. In aggregate, the food thaws but does not melt. Melting implies the phase change of all solids to liquid.

Ecological consequences

World-wide, permafrost contains 1700 billion tons of organic material equaling almost half of all organic material in all soils.[3] This pool was built up over thousands of years and is only slowly degraded under the cold conditions in the Arctic. The amount of carbon sequestered in permafrost is four times the carbon that has been released to the atmosphere due to human activities in modern time.[11]

Formation of permafrost has significant consequences for ecological systems, primarily due to constraints imposed upon rooting zones, but also due to limitations on den and burrow geometries for fauna requiring subsurface homes. Secondary effects impact species dependent on plants and animals whose habitat is constrained by the permafrost. One of the most widespread examples is the dominance of Black Spruce in extensive permafrost areas, since this species can tolerate rooting pattern constrained to the near surface.[23]

One gram of soil from the active layer may include more than one billion bacteria cells. If placed along each other, bacteria from one kilogram of active layer soil will form a 1000 km long chain. The number of bacteria in permafrost soil varies widely, typically from 1 to 1000 million per gram of soil.[24] Most of these bacteria and fungi in permafrost soil can not be cultured in the laboratory, but the identity of the microorganisms can be revealed by DNA-based techniques.

Should a substantial amount of the carbon enter the atmosphere, it would accelerate planetary warming. A significant proportion will emerge as methane, which is produced when the breakdown occurs in lakes or wetlands. Although it does not remain in the atmosphere for long, methane traps more of the sun’s heat. The potential for large methane emissions in the Arctic is poorly understood. The United States Department of Energy and the European Union recently committed to related research projects. Preliminary computer analyses suggest that permafrost could produce carbon equal to 15 percent or so of today’s emissions from human activities.[25]

Climate Change and Slope Stability

Over the past century, an increasing number of alpine rock slope failure events in mountain ranges around the world have been recorded. It is expected that the high number of structural failures is due to permafrost thawing, which is thought to be linked to climate change. In mountain ranges, much of the structural stability can be attributed to glaciers and permafrost. As climate warms, permafrost thaws, which results in a less stable mountain structure, and ultimately more slope failures.[26]

Other permafrost issues

Permafrost presents problems for construction, owing to the change of soil properties of ground on which structures are placed. Permafrost also preserves organisms frozen in situ.

Construction on permafrost

Building on permafrost is difficult because the heat of the building (or pipeline) can thaw the permafrost and destabilize the structure. Three common solutions include: using foundations on wood piles; building on a thick gravel pad (usually 1–2 metres/3.3–6.6 feet thick); or using anhydrous ammonia heat pipes. The Trans-Alaska Pipeline System uses heat pipes built into vertical supports to prevent the pipeline from sinking and the Qingzang railway in Tibet employs a variety of methods to keep the ground cool, both in areas with frost-susceptible soil.

The Permafrost Research Institute in Yakutsk, found that the sinking of large buildings into the ground can be prevented by using stilts extending down to 15 metres (49 ft) or more. At this depth the temperature does not change with the seasons, remaining at about −5 °C (23 °F).

Revival of organisms preserved in permafrost

In 2012, Russian researchers have proved that permafrost can serve as a natural depository for ancient life forms by the reviving of Silene stenophylla from a tissue as the oldest plant ever to be generated from a burrow in the Siberian permafrost for over 30,000 years. The plant is fertile, producing white flowers and viable seeds. The study has demonstrated that tissue can survive ice preservation for tens of thousands of years.[27]

See also


External links

  • Center for Permafrost (CENPERM)
  • International Permafrost Association (IPA)
  • What is Permafrost?, Geological Survey of Canada
  • Melting Russian Permafrost Could Accelerate Global Warming - ENS (7 September 2006)
  • PERMAFROST: A Building Problem For Alaska
  • Permafrost Young Researchers Network (PYRN)
  • United States Permafrost Association (USPA)
  • Conversion Calculator
  • Geophysical Institute Permafrost Lab, University of Alaska Fairbanks
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.