World Library  
Flag as Inappropriate
Email this Article

Disulfur dioxide

Article Id: WHEBN0033875904
Reproduction Date:

Title: Disulfur dioxide  
Author: World Heritage Encyclopedia
Language: English
Subject: Carbon trioxide, Ytterbium(III) oxide, Antimony tetroxide, Cobalt(II,III) oxide, Dicarbon monoxide
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Disulfur dioxide

Disulfur dioxide
structure of disulfur dioxide, S2O2
space-filling model of the disulfur dioxide molecule
Identifiers
CAS number  [1]
Jmol-3D images Image 1
Properties
Molecular formula S2O2
Molar mass 96.1299 g/mol
Appearance gas
Structure
Coordination
geometry
bent
Hazards
Main hazards toxic
Related compounds
Related compounds tetrasulfur
SO,
S3O
S2O
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)

Disulfur dioxide, dimeric sulfur monoxide or SO dimer is an oxide of sulfur.[2] The molecule is unstable with a lifetime of a few seconds.[3] It is an asymmetric top molecule.[1] The molecule adopts cis-planar structure with C2v symmetry with the two sulfur atoms joined.[4] The shape is the same as the tetrasulfur molecule S4.[4] The S-O bond length is 145.8 pm, shorter than in the sulfur monoxide monomer, and the S-S bond length is 202.45 pm. The OSS angle is 112.7°. S2O2 has a dipole moment of 3.17 D.[5]

Formation

Sulfur monoxide (SO) converts to disulfur dioxide (S2O2) spontaneously and reversibly.[5] So the substance can be generated by methods that produce sulfur monoxide. Disulfur dioxide has also been formed by an electric discharge in sulfur dioxide.[4] Another laboratory procedure is to react oxygen atoms with carbon oxysulfide or carbon disulfide vapour.[6]

Although elemental sulfur and sulfur dioxide do not combine, the exotic species atomic sulfur is extremely reactive and combines spontaneously with sulfur dioxide to form sulfur monoxide, the intermediate molecule formed is disulfur dioxide:[7]

S + SO2 S2O2
S2O2 2SO

Disulfur dioxide is also produced upon a microwave discharge in sulfur dioxide diluted in helium.[8] At a pressure of 0.1 mm Hg,five percent of the result is S2O2.[9]

Disulfur dioxide is formed transiently when hydrogen sulfide and oxygen undergo flash photolysis.[10]

At one time burning sulfur was thought to make the molecule based on the ultraviolet spectrum.[11]

Properties

The ionisation energy of disulfur dioxide is 9.93±0.02  eV.[6]

Reactions

Although disulfur dioxide exists in equilibrium with sulfur monoxide, it also reacts with sulfur monoxide to form sulfur dioxide and disulfur monoxide.[8][12]

Complexes

S2O2 can be a ligand with transition metals. It binds in the η2-S,S' position with both sulfur atoms linked to the metal atom.[13] This was first shown in 2003. The bis-(trimethylphosphine) thiirane S-oxide complex of platinum, when heated in toluene at 110°C loses ethylene, and forms a complex with S2O2: (Ph3P)2PtS2O2.[14] Iridium atoms can also form a complex: cis-[(dppe)2IrS2]Cl with sodium periodate oxidises to [(dppe)2IrS2O] and then to [(dppe)2IrS2O2], with dppe being 1,2-Bis(diphenylphosphino)ethane.[15][16] This substance has the S2O2 in a cis position. The same conditions can make a trans complex, but this contains two separate SO radicals instead. The iridium complex can be decomposed with triphenyl phosphine to form triphenyl phosphine oxide, and triphenyl phosphine sulfide.[15]

A S2O2 macrocycle has nothing to do with this molecule, this is a larger organic ring molecule with sulfur and oxygen atoms positioned to be ligands for a metal ion, for example 5,8-dioxa-2,11-dithia-[12]-o-cyclophane.[17]

Anion

The S2O2- anion has been made in the gas phase, and may in fact have the trigonal shape with a sulfur atom attached to two oxygens and one other sulfur atom.[18]

Spectrum

Microwave

Transition Frequency MHz[4]
21,1−20,2 11013.840
41,3−40,4 14081.640
11,1−00,0 15717.946
40,4−31,3 16714.167
31,3−20,2 26342.817
42,2−41,3 26553.915
22,0−21,1 28493.046
60,6−51,5 30629.283
52,4−51,5 35295.199
51,5−40,4 35794.527

References

  1. ^ a b Demaison, Jean; Vogt, Jürgen (2011). "836 O2S2 Disulfur dioxide". Asymmetric Top Molecules, Part 3. Landolt-Börnstein - Group II Molecules and Radicals 29D3. Springer. p. 492.  
  2. ^ Arnold F. Holleman, Egon Wiber, Nils Wiberg, ed. (2001). "Oxides of sulfur". Inorganic Chemistry. Academic Press. p. 530. 
  3. ^ Mitchell, Stephen C. (09/03/2004). Biological Interactions Of Sulfur Compounds. CRC Press. p. 7.  
  4. ^ a b c d Thorwirth, Sven; P. Theulé; C. A. Gottlieb; H. S. P. Müller; M. C. McCarthy; P. Thaddeus (23 February 2006). O: vibrational satellites, 33 S isotopomers, and the submillimeter-wave spectrum"2"Rotational spectroscopy of S. Journal of Molecular Structure 795: 219–229.  
  5. ^ a b Spectroscopic studies of the SO2 discharge system. II. Microwave spectrum of the SO dimer Lovas F. J., Tiemann E., Johnson D.R. The Journal of Chemical Physics (1974), 60, 12, 5005-5010 doi:10.1063/1.1681015
  6. ^ a b Cheng, Bing-Ming; Wen-Ching Hung (1999). "Photoionization efficiency spectrum and ionization energy of S[sub 2]O[sub 2]". The Journal of Chemical Physics 110 (1): 188.  
  7. ^ Murakami, Yoshinori; Shouichi Onishi, Takaomi Kobayashi, Nobuyuki Fujii, Nobuyasu Isshiki, Kentaro Tsuchiya, Atsumu Tezaki, Hiroyuki Matsui (2003). "High Temperature Reaction of S + SO2→ SO + SO: Implication of S2O2Intermediate Complex Formation". The Journal of Physical Chemistry A 107 (50): 10996–11000.  
  8. ^ a b Field, T A; A E Slattery; D J Adams; D D Morrison (2005). "Experimental observation of dissociative electron attachment to S2O and S2O2 with a new spectrometer for unstable molecules". Journal of Physics B: Atomic, Molecular and Optical Physics 38 (3): 255–264.  
  9. ^ Pujapanda, Balaram Sahoo, Nimain C. Nayak, Asutosh Samantaray, Prafulla K.; Balaram, Sahoo; Charan, nayak Nimai; samantaray Asutosh, pujapanda Prafulla Kumar. Inorganic Chemistry. PHI Learning Pvt. Ltd. p. 461.  
  10. ^ Compton, R. G.; Bamford, C.H.; Tipper, C.F.H. (1972). "Oxidation of H2S". Reactions of Non-Metallic Inorganic Compounds. Comprehensive Chemical Kinetics. Elsevier. p. 50.  
  11. ^ Murthy, A. R. Vasudeva (1952). "Studies in the chemical behaviour of some compounds of sulphur - Springer". Retrieved 16 May 2013. 
  12. ^ Herron, J. T.; R. E. Huie (1980). "Rate constants at 298 K for the reactions sulfur monoxide + sulfur monoxide + M -> dimeric sulfur monoxi de + M and sulfur monoxide + dimeric sulfur monoxide -> sulfur dioxide + sulfur oxide (S2O).". Chemical Physics Letters 76 (2): 322–324.  
  13. ^ Halcrow, Malcolm A.; John C. Huffman; George Christou (1994). "Synthesis, Characterization, and Molecular Structure of the New S2O Complex Mo(S2O)(S2CNEt2)3.cntdot.1/2Et2O". Inorganic Chemistry 33 (17): 3639–3644.  
  14. ^ Lorenz, Ingo-Peter; Jürgen Kull (1986). "Complex Stabilization of Disulfur Dioxide in the Fragmentation of ThiiraneS-Oxide on Bis(triphenylphosphane)platinum(0)". Angewandte Chemie International Edition in English 25 (3): 261–262.  
  15. ^ a b Schmid, Günter; Günter Ritter; Tony Debaerdemaeker (1975). "Die Komplexchemie niederer Schwefeloxide, II. Schwefelmonoxid und Dischwefeldioxid als Komplexliganden". Chemische Berichte 108 (9): 3008–3013.  
  16. ^ Nagata, K; N. Takeda; N Tokitoh N (2003). "Unusual Oxidation of Dichalcogenido Complexes of Platinum". Chemical Letters 32 (2): 170–171.  
  17. ^ Yoon, Il; Ki-Min Park, Jong Hwa Jung, Jineun Kim, Sung Bae Park, Shim Sung Lee (Feb 2002). "Synthesis and Crystal Structures of S2O2 Macrocycle L, and its Silver(I) and Platinum(II) Complexes (Where L = 5,8-dioxa-2,11-dithia-[12]-o-cyclophane)". Journal of Inclusion Phenomena and Macrocyclic Chemistry 42 (1/2): 45–50.  
  18. ^ Clements, Todd G.; Hans-Jürgen Deyerl, Robert E. Continetti (2002). "Dissociative Photodetachment Dynamics of S2O2-". The Journal of Physical Chemistry A 106 (2): 279–284.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.