World Library  
Flag as Inappropriate
Email this Article

ETS transcription factor family

Article Id: WHEBN0016790755
Reproduction Date:

Title: ETS transcription factor family  
Author: World Heritage Encyclopedia
Language: English
Subject: ELK4, ERG (gene), FLI1, Prostate cancer, Transcription factors
Collection: Gene Expression, Protein Families, Transcription Factors
Publisher: World Heritage Encyclopedia
Publication
Date:
 

ETS transcription factor family

Ets-domain
Structure of Ets-1 DNA binding autoinhibition.[1]
Identifiers
Symbol Ets
Pfam PF00178
Pfam clan CL0123
InterPro IPR000418
SMART SM00413
PROSITE PDOC00374
SCOP 1r36
SUPERFAMILY 1r36

In the field of molecular biology, the ETS (E26 transformation-specific[2] or E-twenty-six[3]) family is one of the largest families of transcription factors and is unique to metazoans. There are 29 genes in humans, 28 in the mouse, 10 in Caenorhabditis elegans and 9 in Drosophila. The founding member of this family was identified as a gene transduced by the leukemia virus, E26. The members of the family have been implicated in the development of different tissues as well as cancer progression.

Contents

  • Subfamilies 1
  • Structure 2
  • Function 3
  • Mode of action 4
  • References 5
  • Further reading 6

Subfamilies

The ETS family is divided into 12 subfamilies, which are listed below:[4]

Subfamily Mammalian family members Invertebrate orthologs
ELF ELF1, ELF2 (NERF), ELF4 (MEF)
ELG GABPα ELG
ERG ERG, FLI1, FEV
ERF ERF (PE2), ETV3 (PE1)
ESE ELF3 (ESE1/ESX), ELF5 (ESE2), ESE3 (EHF)
ETS ETS1, ETS2 POINTED
PDEF SPDEF (PDEF/PSE)
PEA3 ETV4 (PEA3/E1AF), ETV5 (ERM), ETV1 (ER81)
ER71 ETV2 (ER71)
SPI SPI1 (PU.1), SPIB, SPIC
TCF ELK1, ELK4 (SAP1), ELK3 (NET/SAP2) LIN
TEL ETV6 (TEL), ETV7 (TEL2) YAN

Structure

All ETS family members are identified through a highly conserved DNA binding domain, the ETS domain, which is a winged helix-turn-helix structure that binds to DNA sites with a central GGA(A/T) DNA sequence. As well as DNA-binding functions, evidence suggests that the ETS domain is also involved in protein-protein interactions. There is limited similarity outside the ETS DNA binding domain.

Other domains are also present and vary from ETS member to ETS member, including the Pointed domain, a subclass of the SAM domain family.

Function

The ETS family is present throughout the body and is involved in a wide variety of functions including the regulation of cellular differentiation, cell cycle control, cell migration, cell proliferation, apoptosis (programmed cell death) and angiogenesis.

Multiple Ets factors have been found to be associated with cancer, such as through gene fusion. For example, the ERG ETS transcription factor is fused to the EWS gene, resulting in a condition called Ewing's sarcoma.[5] The fusion of TEL to the JAK2 protein results in early pre-B acute lymphoid leukaemia.[6] ERG and ETV1 are known gene fusions found in prostate cancer. [7]

In addition, Ets factors, e.g. the vertebrate Etv1 and the invertebrate Ast-1, have been shown to be important players in the specification and differentiation of dopaminergic neurons in both C. elegans and olfactory bulbs of mice.[8]

Mode of action

Amongst members of the ETS family, there is extensive conservation in the DNA-binding ETS domain and, therefore, a lot of redundancy in DNA binding. It is thought that interactions with other proteins is one way in which specific binding to DNA is achieved.[9] ETS factors act as transcriptional repressors, transcriptional activators, or both.[10]

References

  1. ^
  2. ^
  3. ^
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^
  9. ^
  10. ^

Further reading

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.