World Library  
Flag as Inappropriate
Email this Article

Electron pair

Article Id: WHEBN0007376733
Reproduction Date:

Title: Electron pair  
Author: World Heritage Encyclopedia
Language: English
Subject: Nucleophile, Covalent bond, Magnetochemistry, Electrophile, Solvated electron
Collection: Chemical Bonding, Molecular Physics, Quantum Chemistry
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Electron pair

In chemistry, an electron pair or a Lewis pair consists of two electrons that occupy the same orbital but have opposite spins. The electron pair concept was introduced in a 1916 paper of Gilbert N. Lewis.[1]

MO diagrams depicting covalent (left) and polar covalent (right) bonding in a diatomic molecule. In both cases a bond is created by the formation of an electron pair.

Because electrons are fermions, the Pauli exclusion principle forbids these particles from having exactly the same quantum numbers. Therefore the only way to occupy the same orbital, i.e. have the same orbital quantum numbers, is to differ in the spin quantum number. This limits the number of electrons in the same orbital to exactly two.

The pairing of spins is often energetically favorable and electron pairs therefore play a very large role in chemistry. They can form a chemical bond between two atoms, or they can occur as a lone pair of valence electrons. They also fill the core levels of an atom.

Because the spins are paired, the magnetic moment of the electrons cancels and the contribution of the pair to the magnetic properties will in general be a diamagnetic one.

Although a strong tendency to pair off electrons can be observed in chemistry, it is also possible that electrons occur as unpaired electrons.

In the case of metallic bonding the magnetic moments also compensate to a large extent, but the bonding is more communal so that individual pairs of electrons cannot be distinguished and it is better to consider the electrons as a collective 'ocean'.

A very special case of electron pair formation occurs in superconductivity: the formation of Cooper pairs.

See also

References

  1. ^ Jean Maruani (1989). Molecules in Physics, Chemistry and Biology: v. 3: Electronic Structure and Chemical Reactivity. Springer. p. 73.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.