World Library  
Flag as Inappropriate
Email this Article

Freeze distillation

Article Id: WHEBN0000876933
Reproduction Date:

Title: Freeze distillation  
Author: World Heritage Encyclopedia
Language: English
Subject: Distillation, Zone melting, Fractional distillation, Fractional freezing, Fusel alcohol, Distilled beverage, Applejack (beverage)
Publisher: World Heritage Encyclopedia

Freeze distillation


Fractional freezing is a process used in process engineering and chemistry to separate substances with different melting points. It can be done by partial melting of a solid, for example in zone refining of silicon or metals, or by partial crystallization of a liquid, for example "freeze distillation", also called "normal freezing" or "progressive freezing".

Partial crystallization can also be achieved by adding a dilute solvent to the mixture, and cooling and concentrating the mixture by evaporating the solvent, a process called "solution crystallization".[1] Fractional freezing is generally used to produce ultra-pure solids, or to concentrate heat-sensitive liquids.

Freeze distillation

Freeze distillation is a term for a process of enriching a solution by partially freezing it and removing frozen material that is poorer in the dissolved material than is the liquid portion left behind. Such enrichment parallels enrichment by true distillation, where the evaporated and re-condensed portion is richer than the liquid portion left behind.

Such enrichment by freezing of a solution in water is sometimes oversimplified by saying that, for instance, because of the difference in freezing points of water (0 °C/32 °F), and ethyl alcohol (-114 °C/-173 °F), "the water freezes into ice...while the ethyl alcohol remains liquid." This is false, and although some of the implications of that description are true and useful, other conclusions drawn from it would be false.

The detailed situation is the subject of thermodynamics, a subdivision of physics of importance to chemistry. Without resorting to mathematics, the following can be said for a mixture of water and alcohol:

  • Freezing in this scenario begins at a temperature significantly below 0 °C.
  • The first material to freeze is not the water, but a dilute solution of alcohol in water.
  • The liquid left behind is richer in alcohol, and as a consequence, further freezing would take place at progressively lower temperatures. The frozen material, while always poorer in alcohol than the (increasingly rich) liquid, becomes progressively richer in alcohol.
  • Further stages of removing frozen material and waiting for more freezing will come to naught once the liquid uniformly cools to the temperature of whatever is cooling it.
  • If progressively colder temperatures are available,
    • the frozen material will contain progressively larger concentrations of alcohol, and
    • the fraction of the original alcohol removed with the solid material will increase.
  • In practice, unless the removal of solid material carries away liquid, the degree of concentration will depend on the final temperature rather than on the number of cycles of removing solid material and chilling.
  • Thermodynamics gives fair assurance, even without more information about alcohol and water than that they freely dissolve in each other, that
    • even if temperatures somewhat below the freezing point of ethyl alcohol are achieved, there will still be alcohol and water mixed as a liquid, and
    • at some still lower temperature, the remaining alcohol-and-water solution will freeze without an alcohol-poor solid being separable.

The best-known freeze-distilled beverages are applejack and ice beer. Ice wine is the result of a similar process, but in this case, the freezing happens before the fermentation, and thus it is sugar, not alcohol, that gets concentrated. For an in depth discussion of the physics and chemistry, see eutectic point.

Purification of solids

When a pure solid is desired, two possible situations can occur. If the contaminant is soluble in the desired solid, a multiple stage fractional freezing is required, analogous to multistage distillation. If, however, a eutectic system forms (analogous to an azeotrope in distillation), a very pure solid can be recovered, as long as the liquid is not at its eutectic composition (in which case a mixed solid forms, which can be hard to separate) or above its eutectic composition (in which case the undesired solid forms).

Concentration of liquids

When the requirement is to concentrate a liquid phase, fractional freezing can be useful due to its simplicity. Fractional freezing is also used in the production of fruit juice concentrates and other heat-sensitive liquids, as it does not involve heating the liquid (as happens during evaporation).


Fractional freezing can be used to desalinate sea water. In a process that naturally occurs with sea ice, frozen salt water, when partially melted, leaves behind ice that is of a much lower salt content. Because sodium chloride lowers the melting point of water, the salt in sea water tends to be forced out of pure water while freezing. Likewise, the frozen water with the highest concentration of salt melts first. Either method decreases the salinity of the frozen water left over, and with multiple runs can be drinkable.

Alcoholic beverages

Fractional freezing can be used as a simple method to increase the alcohol concentration in fermented alcoholic beverages, a process sometimes called freeze distillation. Examples are applejack, made from hard cider, and ice beer. In practice, while not able to produce an alcohol concentration comparable to distillation, this technique can achieve some concentration with far less effort than any practical distillation apparatus would require. Freeze distillation of alcoholic beverages is illegal in many countries.

Freeze distillation can concentrate methanol and fusel alcohols (by-products of fermentation which true distillation can separate out) in applejack to unhealthy levels[dubious ]. As a result, many countries prohibit such applejack as a health measure[dubious ]. However, reducing methanol with the absorption of 4A molecular sieve is a practical method for production.[2] Also, distillation by evaporation can separate these since they have different boiling points.

Alternative Fuels

Fractional freezing is commonly used as a simple method to reduce the gel point of Biodiesel and other alternative diesel fuels, whereby esters of higher gel point are removed from esters of lower gel point through cold filtering, or other methods to reduce the subsequent alternative fuel gel point of the fuel blend. This process employs fuel stratification whereby components in the fuel blend develop a higher specific gravity as they approach their respective gel points and thus sink to the bottom of the container, where they can be removed.

See also


External links

  • Freeze Distillation of Vinegar
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.