In thermodynamics, a state function, function of state, state quantity, or state variable is a property of a system that depends only on the current, equilbrium state of the system.^{[1]} State functions thus do not depend on the path by which the system arrived at its present state. A state function describes the equilibrium state of a system. For example, internal energy, enthalpy, and entropy are state quantities because they describe quantitatively an equilibrium state of a thermodynamic system, irrespective of how the system arrived in that state.
In contrast, mechanical work and heat are process quantities because their values depend on the specific transition (or path) between two equilibrium states.
Contents

History 1

Overview 2

List of state functions 3

See also 4

References 5
History
It is likely that the term “functions of state” was used in a loose sense during the 1850s and 60s by those such as Rudolf Clausius, William Rankine, Peter Tait, William Thomson, and it is clear that by the 1870s the term had acquired a use of its own. In 1873, for example, Willard Gibbs, in his paper “Graphical Methods in the Thermodynamics of Fluids”, states: “The quantities V, B, T, U, and S are determined when the state of the body is given, and it may be permitted to call them functions of the state of the body.”^{[2]}
Overview
A thermodynamic system is described by a number of thermodynamic parameters (e.g. temperature, volume, pressure) which are not necessarily independent. The number of parameters needed to describe the system is the dimension of the state space of the system (D). For example, a monatomic gas having a fixed number of particles is a simple case of a twodimensional system (D=2). In this example, any system is uniquely specified by two parameters, such as pressure and volume, or perhaps pressure and temperature. These choices are equivalent. They are simply different coordinate systems in the twodimensional thermodynamic state space. An analogous statement holds for higherdimensional spaces, as described by the state postulate.
When a system changes state continuously, it traces out a "path" in the state space. The path can be specified by noting the values of the state parameters as the system traces out the path, perhaps as a function of time, or some other external variable. For example, we might have the pressure P(t) and the volume V(t) as functions of time from time t_0 to t_1. This will specify a path in our two dimensional state space example. We can now form all sorts of functions of time which we may integrate over the path. For example, if we wish to calculate the work done by the system from time t_0 to time t_1 we calculate

W(t_0,t_1)=\int_{\mathtt{state}_0}^{\mathtt{state}_1}P\,dV=\int_{t_0}^{t_1}P(t)\frac{dV(t)}{dt}\,dt.
It is clear that in order to calculate the work W in the above integral, we will have to know the functions P(t) and V(t) at each time t, over the entire path. A state function is a function of the parameters of the system which only depends upon the parameters' values at the endpoints of the path. For example, suppose we wish to calculate the work plus the integral of VdP over the path. We would have:

\Phi(t_0,t_1)= \int_{t_0}^{t_1}P\frac{dV}{dt}\,dt +\int_{t_0}^{t_1}V\frac{dP}{dt}\,dt =\int_{t_0}^{t_1}\frac{d(PV)}{dt}\,dt=P(t_1)V(t_1)P(t_0)V(t_0).
It can be seen that the integrand can be expressed as the exact differential of the function P(t)V(t) and that therefore, the integral can be expressed as the difference in the value of P(t)V(t) at the end points of the integration. The product PV is therefore a state function of the system.
By way of notation, we will specify the use of d to denote an exact differential. In other words, the integral of d\Phi will be equal to \Phi(t_1)\Phi(t_0). The symbol δ will be reserved for an inexact differential, which cannot be integrated without full knowledge of the path. For example, \delta W=PdV will be used to denote an infinitesimal increment of work.
It is best to think of state functions as quantities or properties of a thermodynamic system, while nonstate functions represent a process during which the state functions change. For example, the state function PV is proportional to the internal energy of an ideal gas, but the work W is the amount of energy transferred as the system performs work. Internal energy is identifiable, it is a particular form of energy. Work is the amount of energy that has changed its form or location.
List of state functions
The following are considered to be state functions in thermodynamics:
See also
References

^ Callen, Herbert B. (1985). Thermodynamics and an Introduction to Thermostatistics. Wiley. p. 5,37.

^ Gibbs, Josiah Willard (May 1873). "Graphical Methods in the Thermodynamics of Fluids". Transactions of the Connecticut Academy II: 309–342.
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.