World Library  
Flag as Inappropriate
Email this Article

Glycol cleavage

Article Id: WHEBN0004102521
Reproduction Date:

Title: Glycol cleavage  
Author: World Heritage Encyclopedia
Language: English
Subject: Organic redox reactions, List of organic reactions
Publisher: World Heritage Encyclopedia

Glycol cleavage

Glycol cleavage is a specific type of organic chemistry oxidation. The carbon–carbon bond in a vicinal diol (glycol) is cleaved and replaced with two carbon–oxygen double bonds. Depending on the substitution pattern in the diol, either ketones or aldehydes may be formed.

Glycol cleavage is an important reaction in the laboratory because it is useful for determining the structures of sugars. After cleavage takes place the ketone and aldehyde fragments can be inspected and the location of the former hydroxyl groups ascertained.[1]


Periodic acid (HIO4) and lead tetraacetate (Pb(OAc)4) are the most common reagents used for glycol cleavage. These reactions involve cyclic intermediates which then decompose to form ketones (if the R groups are not H) or aldehydes (if one of the R groups is H).

Glycol cleavage with Pb(OAc)4 involves a cyclic intermediate.

Warm concentrated potassium permanganate (KMnO4) will react with an alkene to form a glycol and will then immediately cleave the glycol to give stable ketones or oxidizable aldehydes. The aldehydes will react further to become carboxylic acids. Controlling the temperature and concentration of the reagent can keep the reaction from continuing past the formation of the glycol.

Glycol cleavage by periodic acid is called Malaprade periodic acid oxidation first reported by Léon Malaprade in 1934 [2] and also works with beta-aminoalcohols [3]


  1. ^ Wade, L. G. Organic Chemistry, 6th ed.., Prentice Hall, Upper Saddle River, New Jersey, 2005; pp 358–361, pp 489–490. ISBN 0-13-147882-6
  2. ^ L. Malaprade, Bull. Soc. Chim. Fr. 3, 1, 833 1934;
  3. ^ THE ACTION OF PERIODIC ACID ON α-AMINO ALCOHOLS Ben H. Nicolet, Leo A. Shinn J. Am. Chem. Soc., 1939, 61 (6), p 1615 doi:10.1021/ja01875a521

External links

  • Periodate oxidation of polysaccharides
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.