World Library  
Flag as Inappropriate
Email this Article

Gordon Growth Model

Article Id: WHEBN0002348354
Reproduction Date:

Title: Gordon Growth Model  
Author: World Heritage Encyclopedia
Language: English
Subject: Stock valuation, Terminal value (finance)
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Gordon Growth Model

The dividend discount model (DDM) is a method of valuing a company based on the theory that a stock is worth the discounted sum of all of its future dividend payments.[1] In other words, it is used to value stocks based on the net present value of the future dividends. The equation most widely used is called the Gordon growth model. It is named after Myron J. Gordon of the University of Toronto, who originally published it along with Eli Shapiro in 1956 and made reference to it in 1959;[2][3] although the theoretical underpin was provided by John Burr Williams in his 1938 text "The Theory of Investment Value".

The variables are: P is the current stock price. g is the constant growth rate in perpetuity expected for the dividends. r is the constant cost of equity capital for that company. D_1 is the value of the next year's dividends. There is no reason to use a calculation of next year's dividend using the current dividend and the growth rate, when management commonly disclose the future year's dividend and websites post it.

P = \frac{D_1}{r-g}

Derivation of equation

The model sums the infinite series which gives the current price P.

P= \sum_{t=1}^{\infty} D_1\times\frac{(1+g)^{t-1}}{(1+r)^t}
P = D_1\times\frac{1}{1+r}\times\frac{1+r}{r-g}
P = \frac{D_1}{r-g}

Income plus capital gains equals total return

The equation can also be understood to generate the value of a stock such that the sum of its dividend yield (income) plus its growth (capital gains) equals the investor's required total return. Consider the dividend growth rate as a proxy for the growth of earnings and by extension the stock price and capital gains. Consider the company's cost of equity capital as a proxy for the investor's required total return.[4]

\text{Income} + \text{Capital Gain} = \text{Total Return}
\text{Dividend Yield} + \text{Growth} = \text{Cost Of Equity}
\frac{D}{P} + g = r
\frac{D}{P} = r - g
\frac{D}{r -g} = P

Growth cannot exceed cost of equity

From the first equation, one might notice that r-g cannot be negative. When growth is expected to exceed the cost of equity in the short run, then usually a two stage DDM is used:

P = \sum_{t=1}^N \frac{D_0 \left( 1+g \right)^t}{\left( 1+r\right)^t} + \frac{P_N}{\left( 1 +r\right)^N}

Therefore,

P = \frac{D_0 \left( 1 + g \right)}{r-g} \left[ 1- \frac{\left( 1+g \right)^N}{\left( 1 + r \right)^N} \right]

+ \frac{D_0 \left( 1 + g \right)^N \left( 1 + g_\infty \right)}{\left( 1 + r \right)^N \left( r - g_\infty \right)},

where g denotes the short-run expected growth rate, g_\infty denotes the long-run growth rate, and N is the period (number of years), over which the short-run growth rate is applied.

Even when g is very close to r, P approaches infinity, so the model becomes meaningless.

Some properties of the model

a) When the growth g is zero the dividend is capitalized.

P_0 = \frac{D_1}{r}.

b) This equation is also used to estimate cost of capital by solving for r.

r = \frac{D_1}{P_0} + g.

Problems with the model

a) The presumption of a steady and perpetual growth rate less than the cost of capital may not be reasonable.

b) If the stock does not currently pay a dividend, like many growth stocks, more general versions of the discounted dividend model must be used to value the stock. One common technique is to assume that the Miller-Modigliani hypothesis of dividend irrelevance is true, and therefore replace the stocks's dividend D with E earnings per share. However, this requires the use of earnings growth rather than dividend growth, which might be different.

c) The stock price resulting from the Gordon model is hyper-sensitive to the growth rate g chosen.

References

Further reading

External links

  • Alternative derivations of the Gordon Model and its place in the context of other DCF-based shortcuts
  • Mathematics of the DDM: questions and solutions.

Template:Stock market

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.