High-speed trains

"High speed train" redirects here. For an article about the 'High Speed Train' in the United Kingdom, see InterCity 125.
For the term 'higher speed rail' used in North America for services with speeds less than 241.4 km/h (150 mph), see Higher speed rail.

High-speed rail is a type of rail transport that operates significantly faster than traditional rail traffic, using an integrated system of specialized rolling stock and dedicated tracks. The first such system began operations in Japan in 1964 and was widely known as the bullet train. High-speed trains normally operate on standard gauge tracks of continuously welded rail on grade separated right-of-way that incorporates a large turning radius in its design.

Since 1964 many countries in addition to Japan have developed high-speed rail to connect major cities (e.g. China, France, Germany, Italy, ROC (Taiwan), Turkey, South Korea and Spain). As of 2012 the maximum commercial speed on most high-speed rail lines was about 300 km/h (186 mph).

While high-speed rail is usually designed for passenger travel, some high-speed systems also offer freight service. For instance, the French mail service La Poste owns a few special TGV trains for carrying postal freight.



Multiple definitions for high-speed rail are in use worldwide.

  1. Infrastructure: track built specially for high-speed travel or specially upgraded for high-speed travel.
  2. Rolling stock: Minimum speed of 250 km/h (155 mph) on lines specially built for high speed and 200 km/h (124 mph) on existing lines which have been specially upgraded.
  3. Operating conditions: Rolling stock must be designed alongside its infrastructure for complete compatibility, safety and quality of service.[1]
  • The International Union of Railways (UIC) prefers to use "definitions" (plural) because they consider that there is no single standard definition of high-speed rail, nor even standard usage of the terms ("high speed", or "very high speed"). They make use of the European EC Directive 96/48, insisting that high speed is a combination of all the elements which constitute the "system": infrastructure, rolling stock and operating conditions.[1]
  • In addition some nations[which?] have domestic standards which may vary from the international ones.

It must be noted, as the International Union of Railways insists, that high-speed rail is a set of unique features, not merely a train travelling above a particular speed. Many conventionally hauled trains, in different parts of the world, are able to reach 200 km/h (124 mph) in commercial service, but are not considered to be high-speed trains, such as the French SNCF Intercités or German DB IC.


Railways were the first form of rapid land transportation and had an effective monopoly on passenger traffic until the development of the motor car and airliners in the early-mid 20th century. Speed had always been an important factor for railroads and they constantly tried to achieve higher speeds and decrease journey times. Rail transportation in the late 19th Century was not much slower than non high-speed trains today and many railroads regularly operated relatively fast express trains which averaged speeds of around 100 km/h (62 mph).[2]

Early research

First experiments

High-speed rail development began in Germany in 1899 when the Prussian state railway joined with ten electrical and engineering firms and electrified 72 kilometres (45 mi) of military owned railway between Marienfelde and Zossen. The line used three-phase current at 10 kilovolts and 45 Hz.

The Van der Zypen & Charlier company of Deutz, Cologne built two railcars, one fitted with electrical equipment from Siemens-Halske, the second with equipment from Allgemeine Elektricitäts-Gesellschaft (AEG), that were tested on the MarienfeldeZossen line during 1902 and 1903.

On 23 October 1903, the S&H-equipped railcar achieved a speed of 206.7 km/h (128.4 mph) and on 27 October the AEG-equipped railcar achieved 210.2 km/h (130.6 mph).[3]

These trains demonstrated the feasibility of electric high-speed rail however regularly scheduled electric high-speed rail travel was still more than 30 years away.

Early German high-speed network

On May 15, 1933, the Deutsche Reichsbahn-Gesellschaft company introduced the diesel-powered "Fliegender Hamburger" in regular service between Hamburg and Berlin, thereby establishing the fastest regular service in the world, with a regular top speed of 160 km/h (99 mph).
This train was a streamlined multi-powered unit, albeit diesel, and used Jakobs bogies some 47 years before the advent of the TGV.

Following the success of the Hamburg line, the steam-powered Henschel-Wegmann Train was developed and introduced in June 1936 for service from Berlin to Dresden, with a regular top speed of 160 km/h (100 mph).
Further development allowed the usage of these "Fliegenden Züge" (flying trains) on a rail network across Germany.[4] The "Diesel-Schnelltriebwagen-Netz" had been in the planning since 1934 but it never reached its envisaged size.

And in August 1939, shortly before the breakout of the war, all high speed service stopped.[5]

The American Streamliners

On 26 May 1934, one year after Fliegender Hamburger introduction, the Burlington Railroad's set an average speed record on long distance with their new streamlined train, the Zephyr, at 124 km/h (77 mph) with peaks at 185 km/h (115 mph). The Zephyr was made of stainless steel, and like the Fliegender Hamburger, was diesel powered, articulated with Jacob bogies, and could reach 160 km/h (99 mph) as commercial speed.

The new service was inaugurated at the end of year, 11 November 1934, between Kansas City and Lincoln, but at lower speed than the record, with an average speed of 74 km/h (46 mph).[6]

In 1935, Milwaukee Road company introduced the Morning Hiawatha service, hauled at 160 km/h (99 mph) by steam locomotives : these are the last "high-speed" trains to use the steam power.

In 1936, the Twin Cities Zephyr entered service, from Chicago to Minneapolis, with an average speed of 101 km/h (63 mph).[7]

The Italian electric and the last steam record

The German high speed service was followed in Italy in 1938 with an electric-multiple-unit ETR 200, designed for 200 km/h (124 mph), between Bologna and Naples. It too reached 160 km/h (99 mph) in commercial service, and achieved a world mean speed record of 203 km/h (126 mph) near Milan in 1938.

In Great Britain in the same year, the streamlined steam locomotive Mallard achieved the official world speed record for steam locomotives at 125.88 mph (202.58 km/h).
The external combustion engines and boilers on steam locomotives were large, heavy and time consuming to maintain, and the days of steam for high speed were numbered.

The birth of Talgo system

In 1945 a Spanish engineer, Alejandro Goicoechea, developed a streamlined articulated train able to run on existing tracks at higher speeds than contemporary passenger trains. This was achieved by providing the locomotive and cars with a unique axle system that used one axle set per car end, connected by a Y-bar coupler. Amongst other advantages, the centre of mass was only half as high as usual.[8] This system became famous under the name of Talgo (Tren Articulado Ligero Goicoechea Oriol), and for half a century was the main Spanish provider of high-speed trains.

The first very-high-speed records

In the early 1950s, the French National Railway started to receive their new powerful CC 7100 electric locomotives, and began to study and evaluate running at very high speeds. In 1954, the CC 7121 hauling a full train achieved a record 243 km/h (151 mph) during a test on standard track.
The next year, two specially tuned electric locomotives, the CC 7107 and the prototype BB 9001, broke previous speed records, reaching respectively 320 km/h (199 mph) and 331 km/h (206 mph), again on standard track.[9]
For the first time, the 300 km/h (186 mph) was surpassed, allowing the idea of feasibility of very high-speed services.

New engineering studies began for this purpose. Especially, during the 1955 records, very dangerous hunting oscillation, the swaying of the bogies which at high speed leads to dynamic instability and potential derailment, were discovered, and led to the use of yaw dampers to solve this problem, enabling safe running speeds above 300 km/h (186 mph) today. Important researches was also to made about "current harnessing" at high-speed by the pantographs, that were solved 20 years later by the Zébulon TGV's prototype.

Breakthrough: The Shinkansen

Japanese research and development

With some 45 million people living in the densely populated Tokyo-to-Osaka corridor, congestion on road and rail became a serious problem after World War II,[10] and the Japanese government began thinking seriously about a new high speed rail service.
Japan in the 1950s was a populous, resource-limited nation that for security reasons did not want to import petroleum, but needed a way to transport its millions of people in and between cities.

Japanese National Railways (JNR) engineers then began to study the development of a high-speed regular mass transit service. In 1955, they were present at the Lille's Electrotechnology Congress in France, and during a 6-month visit, the head engineer of JNR accompanied the deputy director Marcel Tessier at the DETE (SNCF Electric traction study department).[9] JNR engineers returned to Japan with a number of ideas and technologies they would use on their future trains, including alternating current for rail traction, and international standard gauge.

The first narrow-gauge Japanese high-speed service

In 1957, the engineers at the private Odakyu Electric Railway in Greater Tokyo area launched the Odakyu 3000 series SE EMU. This EMU set a world record for narrow gauge trains at 145 km/h (90 mph), giving the Odakyu engineers confidence they could safely and reliably build even faster trains at standard gauge.[10] The original Japanese railways generally used narrow gauge, but the increased stability offered by widening the rails to standard gauge would make very high-speed rail much simpler, and thus standard gauge was adopted for high-speed service.

A new train on a new line

The new service, named Shinkansen (meaning new trunk line) would run on new, 25% wider standard gauge, continuously welded rails between Tokyo and Osaka using new rolling stock, designed for 250 km/h (155 mph). However, the World Bank, whilst supporting the project, considered the design of the equipment as unproven for that speed, and set the maximum speed to 210 km/h (130 mph).[9]

After initial feasibility tests, the plan was fast-tracked and construction of the first section of the line started on 20 April 1959.[11] In 1963, on the new track, tests runs hit a top speed of 256 km/h (159 mph). Five years after the beginning of the construction work, in October 1964, just in time for the Olympic Games, the first modern high speed rail, the Tōkaidō Shinkansen, was opened between the two cities.

The first Shinkansen trains, the 0 Series Shinkansen, built by Kawasaki Heavy Industries—in English often called "Bullet Trains", after the original Japanese name Dangan Ressha (弾丸列車)—outclassed the earlier fast trains in commercial service. They ran the 515 km (320 mi) distance in 3 hours 10 minutes, reaching a top speed of 210 km/h (130 mph) and sustaining an average speed of 162.8 km/h (101.2 mph) with stops at Nagoya and Kyoto.

A great success

But the speed was only a part of the Shinkansen revolution: the Shinkansen offered high-speed rail travel to the masses. The first Bullet trains had 12 cars and later versions had up to 16,[12] and double-deck trains further increased the capacity.[13][14]

After three years, more than 100 million passengers had used the trains, and the milestone of the first one billion passengers was reached in 1976. In 1972 the line was extended a further 161 km (100 mi), and further construction has resulted in the network expanding to 2,387 km (1,483 mi) as at March 2013, with a further 776 km (482 mi) of extensions currently under construction and due to open in stages between March 2015 and 2035. The cumulative patronage on the entire system since 1964 is over 10 Billion, the equivalent of ~150% of the world's population, without a single fatality.[15]

Revival in Europe and North America

A first demonstration at 200 km/h

In Europe, high-speed rail began during the International Transport Fair in Munich in June 1965, when Dr Öpfering, the director of Deutsche Bundesbahn (German Federal Railways), performed 347 demonstrations at 200 km/h (124 mph) between Munich and Augsburg by DB Class 103 hauled trains.

The same year, in France, the engineer Jean Bertin created the Aérotrain, a hovercraft monorail train, and built the first prototype, supported by the French Land Settlement Commission (DATAR). The prototype reached 200 km/h (124 mph) within days of opening.

First at 200 km/h: Le Capitole

After the success of the Japanese Shinkansen in 1964, at 210 km/h (130 mph), the German demonstrations up to 200 km/h (124 mph) in 1965, and the proof-of-concept jet-powered Aérotrain, SNCF still ran its fastest trains at only 160 km/h (99 mph).

In 1966, the new French Infrastructure Minister, Edgard Pisani, consulted engineers, and gave the French National Railways one year to raise speeds to 200 km/h (124 mph).[9] The classic line ParisToulouse was chosen, and fitted, to support 200 km/h (124 mph) rather than 140 km/h (87 mph). Some improvements were set, notably the signals system, development of on board "in-cab" signalling system, and curve revision.

The next year, in May 1967, the first regular service in the world at 200 km/h (124 mph) by a classic train was inaugurated by the TEE Le Capitole between Paris and Toulouse, with specially adapted SNCF Class BB 9200 locomotives hauling classic UIC cars, and a full red livery.

At the same time, the Aérotrain prototype 02 reached 345 km/h (214 mph) on a half-scale experimental track. In 1969, it achieved 422 km/h (262 mph) on the same track. On 5 March 1974, the full-scale commercial prototype Aérotrain I80HV, jet powered, reached 430 km/h (267 mph).

American Metroliner trains achieve 200km/h

In the United States, immediately following the creation of Japan's first high-speed Shinkansen, U.S. President Lyndon B. Johnson as part of his Great Society infrastructure building initiatives asked the U.S. Congress to devise a way to increase speeds on American railroads.[16] The congress delivered the High Speed Ground Transportation Act of 1965 which passed with overwhelming bi-partisan support and helped to create regular Metroliner service between New York City and Washington, D.C.. The new service was inaugurated in 1969, at speeds reaching 200 km/h (125 mph) and averaging 145 km/h (90 mph) along the route, faster than even Acela Express trains operated between the cities of New York and Washington in 2012.[17]

The HST: a diesel high-speed train at 200 km/h

Great Britain followed Japan, France and U.S. in 1976 with the introduction by British Rail of a new high-speed service, able to reach 200 km/h (124 mph), hauled by the "InterCity 125" diesel-electric train sets, under the brand name of High Speed Train (HST). It was the fastest diesel-powered train in regular service in the world, and it outclassed its 100 mph (161 km/h) forerunners, in speed and acceleration.

Like the Shinkansen, and future TGV, the train was built as a reversible multi-car set, having driving power-cars at both ends, and a fixed formation of passenger cars between them. Journey times were reduced, sometimes by an hour on the East Coast Main Line, and passenger numbers soared.

Europe at 200 km/h

The next year, in 1977, Germany finally introduced a new service at 200 km/h (124 mph), on the Munich-Augsburg line. That same year, Italy inaugurated the first European High-Speed line, the Direttissima between Roma and Florence, designed for 250 km/h (155 mph), but used by FS E444 hauled train at 200 km/h (124 mph). This year also saw the abandonment for political reasons of the Aérotrain project, in favour of the TGV.

The French TGV

Active research

Following the 1955 records, two divisions of the SNCF began to study high speed services. In 1964, the DETMT (petrol-engine traction studies department of SNCF) planned the use of gas turbines : a diesel-powered railcar is modified with a gas-turbine, and is called "TGV" (Turbotrain Grande Vitesse).[9] It reached 230 km/h (143 mph) in 1967, and served as a basis for the future Turbotrain and the real TGV.

In the same time, the new "SNCF Research Department", created in 1966, was studying some projects, especially a project code-named "C03": "Railways possibilities on new infrastructure (tracks)".[9]

The gas-turbine

In 1969, the "C03 project" is transferred to the public administration while a contract with Alsthom is ratified for the building of two gas-turbine high-speed train prototypes, that will be named "TGV 001".

The prototype consisted of an undividable set of 5 cars and 2 power-cars at both end, each power-car powered by two gas-turbine engine. The notable particularity of the set is the use of Jakobs bogies, shared by two cars, that reduce drag and increase safety.

The next year, in 1970, the DETMT's Turbotrain, gas-turbine powered multiple-elements, designed for 200 km/h (124 mph) but used at 160 km/h (99 mph) began operations on Paris-Cherbourg line. It allowed to experiment future TGV services, especially regular high rate schedules, shuttle services, etc.[9]

The C03 Project

In 1971, the "C03" project, now known as "TGV Sud-Est", is validated by the government, against the Bertin's Aerotrain.[9] Until this date, there was a rivalry between the French Land Settlement Commission (DATAR), supporting the Aérotrain, and the SNCF and its ministry, supporting the conventional rail.
The "C03 project" projected the building a new High-Speed line between Paris and Lyon, with a new multi-powered-elements train running at 260 km/h (162 mph).
Indeed, at that time, the classic Paris-Lyon line is already heavily saturated, a new line is required, and this very loaded corridor, not too short (where car is preferred) nor too long (where planes are better), is the best choice for the new service.

Turnaround: electricity

The 1973 oil shock substantially increases oil prices. In the continuity of the De Gaulle "energy self-sufficiency" and Nuclear-energy policy, a ministry decision switched the future TGV from now costly gas-turbine to full electric energy in 1974. Because of this new orientation, an electric railcar is heavily tuned for testings at very high speeds. Named Zébulon, it reached 306 km/h (190 mph), and, among other, allowed the creation of pantographs sustaining over 300 km/h (186 mph).[9]

The TGV: the first service above 250 km/h

After intensive tests with the gas-turbine "TGV 001" prototype, and the electric "Zébulon", in 1977, the SNCF placed an order to the group Alsthom-Francorail-MTE for 87 TGV Sud-Est trainsets.[9] This definitive train reuse the "TGV 001" concept, with an undividable set of 8 cars, sharing "Jakobs bogies", and hauled by 2 electric power-cars, one at each end.

In 1981, the first section of the new Paris-Lyon High-Speed line is inaugurated, with a 260 km/h (162 mph) top speed (then 270 km/h (168 mph) soon after).

With a far greater top speed, a new totals dedicated high-speed line, and a complete compatibility with existing old network, the TGV offers the ability to join every city in the country, using alternatively standard and high-speed line, in a shorter time than ever.[9]

After the introduction of the TGV on some routes, air traffic on these routes decreased, or even disappeared.[9]

At the same time, the TGV made history with its multiple, highly publicized speed records: in 1981 with a record at 380 km/h (236 mph), in 1990 at 515 km/h (320 mph), and then in 2007 at 574 km/h (357 mph).

Evolution in Europe

Following the French TGV, in 1991 Germany was the second country in the Europe to inaugurate a high-speed rail service, with the launch of the Intercity-Express (ICE) on the new Hannover-Würzburg high speed railway, operating at a top speed of 280 km/h (174 mph). The German ICE train was a set like the TGV, with dedicated streamlined motor cars at both ends, and a variable number of trailers between them. Unlike the TGV, the trailers had classical two bogies per car, and could be de-coupled, allowing the train to be lengthened or shortened. This introduction was the result of ten years of study with the ICE-V prototype, which broke the world speed record in 1988, reaching 406 km/h (252 mph).

In 1992, just in time for the Barcelona Olympic Game and Seville Expo '92 the Madrid–Seville high-speed rail line opened in Spain with 25 kV AC electrification, and standard gauge, opposed to all other Spanish tracks which used Iberian gauge tracks. This allowed the AVE rail service to begin operations using Class 100 train sets built by Alstom, directly derived in design from the French TGV trains. The service was very popular and development continued on high-speed rail in Spain.

In 2005, the Spanish Government announced an ambitious plan, (PEIT 2005–2020)[18] envisioning that by 2020, 90 percent of the population would live within 50 km (30 mi) of a station served by AVE. Spain began building the largest HSR network in Europe: as of 2011 five of the new lines have opened (Madrid-Zaragoza-Lleida-Tarragona-Barcelona, Córdoba- Malaga, Madrid-Toledo, Madrid-Segovia-Valladolid, Madrid-Cuenca-Valencia) and another 2,219 km (1,379 mi) were under construction.[19] As of December 2010, the Spanish AVE system is the longest HSR network in Europe and the second in the world, after China.[20] Several of those lines, however, have met very limited commercial success.

Evolution in North America

In 1992, the United States Congress authorized the Amtrak Authorization and Development Act to focus on Amtrak's service improvement on the segment between Boston and New York City of the Northeast Corridor. The primary objectives were to electrify the line north of New Haven, Connecticut and replace the then 30-year-old Metroliners with new trains to achieve shorter travel time.

Amtrak started testing two trains, Swedish X2000 and German ICE 1, in the same year along its fully electrified segment between New York City and Washington DC. The officials favored X2000 as it had tilting mechanism. However, the Swedish manufacturer never bid on the contract as the burdensome United States railroad regulations required them to heavily modify the train resulting in added weight among other things. Eventually, a custom-made tilting train derived from TGV, manufactured by Alstom and Bombardier, won the contract and put into service in December 2000.

The new service was named "Acela Express" and linked Boston, New York City, Philadelphia, Baltimore and Washington DC. The service does not meet the 3-hour travel time objective, between Boston and New York City. The time is 3 hours and 24 minutes as it partially runs on regular lines which limit its average speed, with a maximum speed of 241 km/h (150 mph) (150 mph) being reached on a small section of its route through Rhode Island and Massachusetts.[21][22]

Expansion in East Asia

For four decades from its opening in 1964, the Japanese Shinkansen was the only high speed rail service outside of Europe. In the 2000s a number of new high speed rail services started operating in East Asia.

The South Korean KTX

In South Korea, Korea Train Express (KTX) services were launched on 1 April 2004, on the Seoul-Busan corridor, Korea's busiest traffic corridor, between the two largest cities. In 1982, it represented 65.8% of South Korea's population, a number that grew to 73.3% by 1995, along with 70% of freight traffic and 66% of passenger traffic. With both the Gyeongbu Expressway and Korail's Gyeongbu Line congested as of the late 1970s, the government saw the pressing need for another form of transportation.[23]

Construction began on the high-speed line from Seoul to Busan in 1992 with the first commercial service launching in 2004. Top speed for trains in regular service is currently 305 km/h (190 mph), though the infrastructure is designed for 350 km/h (217 mph). The initial rolling stock was based on Alstom's TGV Réseau, and was partly built in Korea. The domestically developed HSR-350x, which achieved 352.4 km/h (219.0 mph) in tests, resulted in a second type of high-speed trains now operated by Korail, the KTX Sancheon. The next generation KTX train, HEMU-430X, achieved 421.4 km/h (262 mph) in 2013, making South Korea the world's fourth country after France, Japan and China to develop a high-speed train running on conventional rail above 420 km/h (261 mph).

The Chinese CRH

State planning for China high speed railway began in the early 1990s, and the country started construction of its first high speed rail line, the Qinhuangdao–Shenyang Passenger Railway, in 1999, which subsequently opened in 2003 with a design speed of 200 km/h (124 mph).

The original goal of the Chinese Ministry of Railways (MOR) was to research and develop domestic technology to reach a world standard. The new high speed rail line was used to test several Chinese developed prototypes. Although they were successful at creating a train set that operated at 300 km/h (186 mph), the trains performed poorly in regular service. Realizing that domestic high speed technology was not sufficiently developed, the MOR purchased high speed trains from French, German, and Japanese manufactures with technology transfers contracts to improve its ability to build high speed trains. In 2007 the first high speed service using foreign high speed trains, called China Railways Highspeed (CRH) or "和谐号" (lit. Harmony) was introduced.

In 2008, the China opened the "Wuhan – Guangzhou" high-speed line at 350 km/h (217 mph), the first line at that speed. Until July 2011, when the maximum speed was lowered to 300 km/h (186 mph), it was the fastest line in the world.

As of 2011, China has the world's longest high-speed rail network with 8,358 km (5,193 mi) of tracks. The network is still rapidly expanding to create the 4+4 National High Speed Rail Grid by 2015.[24] On 25 December 2012, China opened the world's longest high-speed rail line, which runs 2,208 km (1,372 mi) from the country's capital Beijing in the north to Shenzhen on the southern coast.[25]

On 26 December 2012, the world's longest high-speed line opened in China; the Beijing–Guangzhou–Shenzhen–Hong Kong High-Speed Railway at 2,298 kilometres (1,428 mi).[26][27]

Taiwan (THSR)

Taiwan High Speed Rail's first and only HSR line opened for service on 5 January 2007, using Japanese trains with a top speed of 300 km/h (186 mph). The service runs 345 kilometres (214 mi) from Taipei Railway Station to Xinzuoying Station in as little as 96 minutes. Once THSR began operations, almost all passengers switched from airlines flying parallel routes[28] while road traffic was also reduced.[29]



Operational high-speed lines in Europe
Operational high-speed lines in East Asia
  310–320 km/h (193–199 mph)   270–300 km/h (168–186 mph)   250 km/h (155 mph)
  200–230 km/h (124–143 mph)   Under construction   Other railways


Dedicated tracks

As defined by Europe and UIC, generally the high-speed rail is a set including a high-speed rolling-stock and a dedicated high-speed line.

Japan was the first nation to build a totally new and dedicated lines and network for its Shinkansen. It was followed by France, then Germany, Spain, etc. Most countries today with high-speed rail have dedicated high-speed tracks. Notable exceptions are the USA and Russia.

In certain cases, in particular in England in the 1970s for the HST, and in China recently, classic old lines have been upgraded to support new high-speed trains, often up to 200 km/h (124 mph). For unconventional trains, such as Aérotrains and Maglev, the use of viaduct-dedicated tracks is necessary.

Tracks design

Continuous welded rail is generally used to reduce track vibrations and misalignment. Almost all high-speed lines are electrically driven via overhead cables, have in-cab signalling, and use advanced switches using very low entry and frog angles.

Constrictions, such as at-grade crossings, where lines intersect other lines and/or roadways are eliminated. For this reason, Japan and China typically build their high-speed lines on elevated viaducts.

High-speed lines avoid tight curves, which reduce speed. Curve radius is typically above 4.5 kilometres (2.8 mi), and for lines supporting 350 km/h (217 mph) speeds, typically at 7 to 9 kilometres (4.3 to 5.6 mi).

The lines may rest on traditional sleeper and ballast or on concrete tiles and fences prevent access to the tracks on foot.

Road-rail parallel layout

Road Rail Parallel Layout uses land beside highways for railway lines. Examples include Paris/Lyon and Köln - Frankfurt in which 15% and 70% of the track runs beside highways, respectively.[30]

Track sharing

High-speed lines may be exclusive or open to standard speed trains.

  • In France, high-speed lines use standard gauge like the rest of the network, but are used only by passenger TGV, and by the Postal TGV.
  • In Germany, high-speed lines are shared between ICE, international high speed trains, regional trains and freight trains.
  • In China, high-speed lines at speeds between 200 and 250 km/h (124 and 155 mph) may carry freight or passengers., Lines operating at speeds of 300 km/h (186 mph) are used only by passenger CRH trains.[31]
  • In Japan and Spain, high-speed lines use standard gauge as opposed to the rest of their respective networks and are thus dedicated to high-speed trains.

Sharing a line between fast and slow traffic reduces its maximum carrying capacity by a very large factor, by forcing much longer intervals between trains at the two different speeds.

Construction costs

Japanese systems are often more expensive than their counterparts, because they run on dedicated elevated guideways, avoid traffic crossings and incorporate disaster monitoring systems. The largest part of Japan's cost is for boring tunnels through mountains, as was also true in Taiwan.

In France, the cost of construction (which was €10 million/km (US$15.1 million/km) for LGV Est) is minimized by adopting steeper grades rather than building tunnels and viaducts. However, in mountainous Switzerland, tunnels are inevitable. Because the lines are dedicated to passengers, gradients of 3.5%, rather than the previous maximum of 1–1.5% for mixed traffic, are used. More expensive land may be required in order to minimize curves. This increases speed, reduces construction costs and lowers operating and maintenance costs. In other countries high-speed rail was built without those economies so that the railway can also support other traffic, such as freight.

Experience has shown however, that running trains of significantly different speeds on one line substantially decreases capacity. As a result, mixed-traffic lines usually reserve daytime for high-speed trains and run freight at night.

Rolling stock

Key technologies include tilting trainsets, aerodynamic designs (to reduce drag, lift, and noise), air brakes, regenerative braking, engine technology and dynamic weight shifting.

Comparison with other modes of transport

Optimal distance

While commercial high-speed trains have lower maximum speeds than jet aircraft, they offer shorter total trip times than air travel for short distances. They typically connect city centre rail stations to each other, while air transport connects airports that are typically farther from city centres.

High-speed rail (HSR) is best suited for journeys of 2 to 4½ hours (about 250–900 km or 160–560 mi), for which the train can beat air and car trip time. For trips under about 650 km (400 mi), the process of checking in and going through airport security, as well as traveling to and from the airport, makes the total air journey time equal to or slower than HSR. European authorities treat HSR as competitive with passenger air for HSR trips under 4½ hours.[32]

HSR eliminated most air transport from between Paris-Brussels, Cologne-Frankfurt, Nanjing-Wuhan, Chongqing-Chengdu,[33] Tokyo-Nagoya, Tokyo-Sendai and Tokyo-Niigata. China Southern Airlines, China's largest airline, expects the construction of China's high speed railway network to impact 25% of its route network in the coming years.[34]

Market shares

European data indicate that air traffic is more sensitive than road traffic (car and bus) to competition from HSR, at least on journeys of 400 km (249 mi) and more – perhaps because cars and buses are far more flexible than planes. TGV Sud-Est reduced the travel time Paris–Lyon from almost four to about two hours. Market share rose from 49 to 72%. Air and road market shares shrunk from 31 to 7% and from 29 to 21%, respectively. On the Madrid–Sevilla link, the AVE connection increased share from 16 to 52%; air traffic shrunk from 40 to 13%; road traffic from 44 to 36%, hence the rail market amounted to 80% of combined rail and air traffic.[35] This figure increased to 89% in 2009, according to Spanish rail operator RENFE.[36]

According to Peter Jorritsma, the rail market share s, as compared to planes, can be computed approximately as a function of the travelling time in minutes t by the formula[37]

s = {1 \over 0.031 \times 1.016^t + 1}

According to this formula, a journey time of three hours yields 65% market share. However, market shares are also influenced by ticket prices. Some air carriers regained market shares by slashing prices.[38]

Energy efficiency

Travel by rail is more competitive in areas of higher population density or where gasoline is expensive, because conventional trains are more fuel-efficient than cars when ridership is high, similar to other forms of mass transit. Very few high-speed trains consume diesel or other fossil fuels but the power stations that provide electric trains with power can consume fossil fuels. In Japan and France, with very extensive high speed rail networks, a large proportion of electricity comes from nuclear power.[39] On the Eurostar, which primarily runs off the French grid, emissions from travelling by train from London to Paris are 90% lower than by flying.[40] Even using electricity generated from coal or oil, high speed trains are significantly more fuel-efficient per passenger per kilometer traveled than the typical automobile because of economies of scale in generator technology.[41] Rail networks, like highways, require large fixed capital investments and thus require a blend of high density and government investment to be competitive against existing capital infrastructure.

Automobile and buses

High-speed rail can accommodate more passengers at far higher speeds than automobiles.

Generally, the longer the journey, the better the time advantage of rail over road if going to the same destination. However, high-speed rail can be competitive with cars on shorter distances, 50–150 kilometres (30–90 mi), for example for commuting, given road congestion or expensive parking fees.

Moreover, typical passenger rail carries 2.83 times as many passengers per hour per meter (width) as a road. A typical capacity is the Eurostar, which runs 15 trains per hour[dubious ] and 800 passengers per train, totaling 12,000 passengers per hour in each direction. By contrast, the Highway Capacity Manual gives a maximum capacity of 2,250 passenger cars per hour per lane, excluding other vehicles. Assuming an average vehicle occupancy of 1.57 people.[42] A standard twin track railway has a typical capacity 13% greater than a 6-lane highway (3 lanes each way), while requiring only 40% of the land (1.0/3.0 versus 2.5/7.5 hectares per kilometer of direct/indirect land consumption). The Tokaido Shinkansen line in Japan, has a much higher ratio (with as many as 20,000 passengers per hour per direction). Similarly commuter roads tend to carry fewer than 1.57 persons per vehicle (Washington State Department of Transportation, for instance, uses 1.2 persons per vehicle) during commute times.

Advantages over air travel

Although air transit has higher speeds of travel, users must include additional time for check-in, baggage handling, security, boarding, and taxiing. Furthermore, rail stations are typically closer to urban centers than airports (except for city-center airports like Reagan National Airport and London City Airport). When considering both processing and travel time to airport, the speed advantage of air travel for mid-distance trips becomes significantly offset.

Rail travel also has less weather dependency than air travel. If the rail system is well-designed and well-operated, severe weather conditions such as heavy snow, heavy fog, and storms do not affect the journeys; flights generally face cancellations or delays under such conditions. Nevertheless, snow, wind and flooding can delay trains.

High-speed trains also have comfort advantages. For example, train passengers can move freely about the train at any point in the journey. The seats are also less subject to weight restrictions than planes, and as such tend to have more padding and legroom. Furthermore, technology advances such as continuously welded rail have minimized vibration and jerking found on slower railways. Air travel, in contrast, can face turbulence if adverse wind conditions arise.

Another advantage trains have is the ability to accommodate multiple itineraries on single trains. While some trains are nonstop, the flexibility added with intermediate stops would dramatically increase air travel times relative to HSR.


HSR is much simpler to control due to its predictable course. High-speed rail systems reduce (but do not eliminate)[43][44] collisions with automobiles or people, by using non-grade level track and eliminating grade level crossings.


The followings are notable accidents involving high-speed trains:

The 1998 Eschede accident

In 1998, after over thirty years of high speed rail operations worldwide without fatal accidents, the Eschede accident occurred in Germany: a poorly designed ICE 1 wheel broke at 200 km/h (124 mph) near Eschede, resulting in the derailment and destruction of almost the entire full set of 16 cars and the subsequent death toll of 101 people.

The 2011 Wenzhou accident

Main article: Wenzhou train collision

On 23 July 2011, 13 years after the Eschede train accident, a Chinese CRH2 traveling at 100 km/h (62 mph) collided with a CRH1 which was stopped on a viaduct in the suburbs of Wenzhou, Zhejiang province, China. The two trains derailed, and four cars fell off the viaduct. 40 people were killed, at least 192 were injured, 12 of which were severe injuries.[45]

The disaster led to a number of changes in management and exploitation of high-speed rail in China. Despite the fact that high speed was not a factor in the accident, one of the major changes was the lowering by 50 km/h (31 mph) of all maximum speeds in China HST, 350 km/h (217 mph) becoming 300, 250 km/h (155 mph) becoming 200, and 200 km/h (124 mph) becoming 160.[46][47]

The 2013 Santiago de Compostela accident

Main article: Santiago de Compostela derailment

In July 2013, a high-speed train in Spain attempted to round a curve which had a speed limit of 80 kilometres per hour (50 mph) at 190 kilometres per hour (120 mph), leading to 78 fatalities.[48] Normally high-speed rail has automatic speed limiting restrictions, but this track section is a conventional section and in this case the automatic speed limit was disabled several kilometers before the station. Two days after the accident, the driver was provisionally charged with homicide by negligence. This is the first accident that occurred with a Spanish high-speed train, but it occurred in a section that was not high speed.[49]

Maximum speed

There are several definitions of "maximum speed" :

  • The maximum speed at which a train is allowed to run by law or policy in daily service (MOR)
  • The maximum speed at which an unmodified train is proved to be capable of running.
  • The maximum speed a specially modified train is proved to be capable of running.

Absolute speed record

Conventional rail

Since the 1955 record, France has nearly continuously held the absolute world speed record. The latest record is held by a SNCF TGV POS trainset, which reached 574.8 km/h (357.2 mph) in 2007, on the newly constructed LGV Est high-speed line. This run was for proof of concept and engineering, not to test normal passenger service.

Unlike the unconventional records, the TGV records have been made by heavily tuned trains, modified from commercial service trains.

Unconventional rail

Speed record for experimental unconventional passenger train was set by the MLX01 manned "magnetic-levitation" train at 581 km/h (361 mph) in 2003.

The record for railed vehicles is 10,325 km/h (6,416 mph) by an unmanned rocket sled by the United States Air Force.

Maximum speed in service

Conventional rail

The fastest operating conventional trains are the French TGV POS, German ICE 3, and Japanese E5 Series Shinkansen with a maximum commercial speed of 320 km/h (199 mph), the former two on some French high-speed lines, and the latter on a part of Tohoku Shinkansen line.[50]

In Spain, on the Madrid–Barcelona HSL, maximum speed is 310 km/h (193 mph).

Since July 2011, in China, the maximum speed is officially 300 km/h (186 mph), but a 10 km/h (6 mph) tolerance is accepted, and trains often reach 310 km/h (193 mph). Before that, from August 2008 to July 2011, China Railway High-speed trains hold the highest commercial operating speed record with 350 km/h (217 mph) on some lines (Beijing–Tianjin Intercity Railway, Wuhan–Guangzhou High-Speed Railway). Due to high costs and safety concerns the top speeds in China were reduced to 300 km/h (186 mph) on 1 July 2011.[51]

Unconventional rail

The Shanghai Maglev Train reaches 431 km/h (268 mph) during its daily service on its 30 km (19 mi) dedicated line, holding the speed record for commercial train service.


The early target areas, identified by France, Japan, Spain, and the U.S., were between pairs of large cities. In France, this was Paris–Lyon, in Japan, Tokyo–Osaka, in Spain, MadridSeville (then Barcelona). In European countries, South Korea and Japan, dense networks of city subways and railways provide connections with high speed rail lines.



China has the largest network of high-speed railways in the world and in 2013 it encompassed 10,000 km of high speed rail.[52][53] According to Railway Gazette, the trains between Shijiazhuang and Zhengzhou East have the fastest average operating speed in the world at 283.7 km/h (176.3 mph) as of August 2013.[54]


Main article: High-speed rail in Japan

In Japan intra-city rail daily usage per capita is the highest, with cumulative ridership of 6 billion passengers[55] exceeds the French TGV of 1 billion (as of 2003), the only other system to reach a billion passenger trips.[56] By comparison, the world's fleet of 22,685 aircraft carried 2.1 billion passengers in 2006, according to International Civil Aviation Organization.


Main article: High-speed rail in Taiwan

Taiwan High Speed Rail is a high-speed rail line that runs approximately 345 km (214 mi) along the west coast of Taiwan, from the national capital Taipei to the southern city of Kaohsiung. The construction was managed by private company Taiwan High Speed Rail Corporation at a total cost of the project was US$18 billion and this company operates the line. The system is based primarily on Japan's Shinkansen technology.

South Korea

Main article: High-speed rail in South Korea

Since its opening in 2004, KTX has transferred over 360 million passengers until April 2013, accounting to one South Korean using it seven times. For any transportation involving travel above 300 km (186 mi), the KTX secured a market share of 57% over other modes of transport, which is by far the largest.[57]


Other target areas include freight lines, such as the Trans-Siberian Railway in Russia, which would allow 3 day Far East to Europe service for freight, potentially fitting in between the months by ship and hours by air.


United States

The United States has domestic definitions for high-speed rail varying between jurisdictions.

  • The United States Code defines high-speed rail as services "reasonably expected to reach sustained speeds of more than 125 mph (201 km/h)",[58]
  • The Federal Railroad Administration uses a definition of top speeds at 110 mph (177 km/h) and above.[59]
  • The Congressional Research Service uses the term "higher speed rail" for speeds up to 150 mph (241 km/h) and "very high speed rail" for the rail on dedicated tracks with speeds over 150 mph (241 km/h).[60]

As of 2013, the Northeast corridor (Acela Express) is the only high-speed rail line in operation in the United States linking Boston, New York City and Washington, D.C. The California High-Speed Rail project is planned to have its first operating segment between Fresno and Bakersfield in 2021. No other segment is expected to be in service before 2025.[61]



Market segmentation has principally focused on the business travel market. The French original focus on business travelers is reflected by the early design of the TGV trains. Pleasure travel was a secondary market; now many of the French extensions connect with vacation beaches on the Atlantic and Mediterranean, as well as major amusement parks and also the ski resorts in France and Switzerland. Friday evenings are the peak time for TGVs (train à grande vitesse).[62] The system lowered prices on long distance travel to compete more effectively with air services, and as a result some cities within an hour of Paris by TGV have become commuter communities, increasing the market while restructuring land use.[63]

On the Paris – Lyon service, the number of passengers grew sufficiently to justify the introduction of double-decker coaches.

Later high-speed rail lines, such as the LGV Atlantique, the LGV Est, and most high-speed lines in France, were designed as feeder routes branching into conventional rail lines, serving a larger number of medium-sized cities.


Germany's first high-speed lines ran north-south, for historical reasons, and later developed east-west after German unification.


During the 1920s and '30s, Italy was one of the first countries to develop the technology for high speed rail. The country constructed the Direttissime railways connecting major cities on dedicated electrified high-speed track (although not as high-speed as would nowadays be called high-speed rail) and developed the fast ETR 200 trainset. After the Second World War and the fall of the fascist regime, interest in high speed rail dwindled, with the successive governments considering it too costly and developing the tilting Pendolino, to run at medium-high speed (up to 250 km/h (160 mph)) on conventional lines, instead. The only exception was the Direttissima between Florence and Rome, but it was not conceived to be part of a high speed line on large scale.

A true dedicated high speed rail network was developed during the 80s and the 90s and in 2010 1,000 km (621 mi) of high speed rail were fully operational. Frecciarossa services are operated with ETR 500 non-tilting trains at 25kVAC, 50 Hz power. The operational speed of the service is of 300 km/h (186 mph). ETR1000 trainsets are currently under construction and were developed by the consortium formed by AnsaldoBreda and Bombardier. Based on the Bombardier Zefiro trainset, it will operate up to 360 km/h (224 mph) on the existing high speed rail system.[64]

Over 100 million passengers used the Frecciarossa from the service introduction and the first months of 2012.[65] Italian high speed services is recording profits, encouraging Trenitalia to plan major investments[which?] and to cede a large part of local and regional services to other operators ( like Nuovo Trasporto Viaggiatori and Trenord) and focusing efforts on high-speed and long-distance services (also through the medium-speed Frecciargento, Frecciabianca and InterCity services, which run on conventional lines).[66]


Spain has built an extensive high speed rail network, 3,100 km (1,926 mi) (2013), the largest in Europe. It uses standard gauge in opposite to the Iberian gauge used in the most of the national railway network, meaning that the high speed railways are separated and has almost only high speed trains, no local trains and no freight. This network is from 2013 connected to the French network, with direct trains Paris-Barcelona.


High speed north-south freight lines in Switzerland are under construction, avoiding slow mountainous truck traffic, and lowering labour costs. The new lines, in particular the Gotthard Base Tunnel, are built for 250 km/h (155 mph). But the short high-speed parts and the mix with freight will keep the average speeds down. The limited size of the country gives fairly short domestic travel times anyway.


The Turkish State Railways started building high-speed rail lines in 2003. The first section of the line, between Ankara and Eskişehir, was inaugurated on March 13, 2009. It is a part of the 533 km (331 mi) Istanbul to Ankara high-speed rail line. A subsidiary of Turkish State Railways, Yüksek Hızlı Tren is the sole commercial operator of high speed trains in Turkey.

The construction of three separate high-speed lines from Ankara to Istanbul, Konya and Sivas, as well as taking an Ankara–İzmir line to the launch stage, form part of the Turkish Ministry of Transport's strategic aims and targets.[67] Turkey plans to construct a network of high-speed lines in the early part of the 21st century, targeting a 1,500 km (932 mi) network of high-speed lines by 2013 and a 10,000 km (6,214 mi) network by the year 2023.[68]

United Kingdom

The UK has one high-speed line (HS-1) connecting London St Pancras with Brussels and Paris through the Channel Tunnel.

See also

Trains portal

Notes and references

Further reading

External links

  • US High Speed Rail Association official site
  • Transrapid – Maglev: High-Speed in Asia (China, Shanghai), Japan (Yamanashi) and Germany (Munich; TVE)
  • UIC: High Speed Rail
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.