World Library  
Flag as Inappropriate
Email this Article

Hydrate

Article Id: WHEBN0000059456
Reproduction Date:

Title: Hydrate  
Author: World Heritage Encyclopedia
Language: English
Subject: Phosphophyllite, Tetrahydroxy-1,4-benzoquinone, Magnesium, Alum, Electroosmotic pump
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Hydrate

In chemistry, a hydrate is a substance that contains water or its elements. The chemical state of the water varies widely between hydrates, some of which were so labeled before their chemical structure was understood.

Chemical nature of hydrates

Organic chemistry

In organic chemistry, a hydrate is a compound formed by the addition of water or its elements to another molecule. For example, ethanol, CH3–CH2–OH, is the product of the hydration reaction of ethene, CH2=CH2, formed by the addition of H to one C and OH to the other C, and so can be considered as the hydrate of ethene. A molecule of water may be eliminated, for example by the action of sulfuric acid. Another example is chloral hydrate, CCl3–CH(OH)2, which can be formed by reaction of water with chloral, CCl3–CH=O.

Molecules have been labeled as hydrates for historical reasons. Glucose, C6H12O6, was originally thought of as C6(H2O)6 and described as a carbohydrate, but this is a very poor description of its structure as known today. Methanol is often sold as “methyl hydrate”, implying the incorrect formula CH3OH2, while the correct formula is CH3–OH.

Many organic molecules, as with inorganic molecules, form crystals that incorporate water into the crystalline structure without chemical alteration of the organic molecule (water of crystallization). The sugar trehalose, for example, exists in both an anhydrous form (melting point 203 °C) and as a dihydrate (melting point 97 °C). Protein crystals commonly have as much as 50% water content.

Inorganic chemistry

Hydrates are inorganic salts "containing water molecules combined in a definite ratio as an integral part of the crystal"[1] that are either bound to a metal center or that have crystallized with the metal complex. Such hydrates are also said to contain water of crystallization or water of hydration. If the water is heavy water, where the hydrogen involved is the isotope deuterium, then the term deuterate may be used in place of hydrate.

 
Anhydrous
cobalt(II) chloride
CoCl2
Cobalt(II) chloride
hexahydrate
CoCl2·6H2O

A colorful example is cobalt(II) chloride, which turns from blue to red upon hydration, and can therefore be used as a water indicator.

The notation of hydrous compound · nH2O, where n is the number of water molecules per formula unit of the salt, is commonly used to show that a salt is hydrated. The n is usually a low integer, though it is possible for fractional values to exist. For example, in a monohydrate n is one, and in a hexahydrate n is 6. Numerical prefixes of Greek origin are:

  • Hemi – 1/2
  • Mono – 1
  • Sesqui - 1½
  • Di – 2
  • Tri – 3
  • Tetra – 4
  • Penta – 5
  • Hexa – 6
  • Hepta – 7
  • Octa – 8
  • Nona – 9
  • Deca – 10

A hydrate which has lost water is referred to as an anhydride; the remaining water, if any exists, can only be removed with very strong heating. A substance that does not contain any water is referred to as anhydrous. Some anhydrous compounds are hydrated so easily that they are said to be hygroscopic and are used as drying agents or desiccants.

Clathrate hydrates

Gas hydrates are clathrate hydrates (a class of solid hydrates of gases): water ice with gas molecules trapped within. When the gas is methane it is called a methane hydrate.

Nonpolar molecules such as methane can form tetrahydrofuran. In such cases the guest-host hydrogen bonds result in the formation of L-type Bjerrum defects in the clathrate lattice.[2]

Stability

The stability of hydrates is generally determined by the nature of the compounds, their temperature, and the relative humidity (if they are exposed to air).

See also

References

  1. ^ "Hydrate". Farlex, Inc (TheFreeDictionary.com). Retrieved 2009-07-08. 
  2. ^ Alavi S, Susilo R, Ripmeester JA (2009). "Linking microscopic guest properties to macroscopic observables in clathrate hydrates: guest-host hydrogen bonding" (PDF). The Journal of Chemical Physics 130 (17): 174501.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.