World Library  
Flag as Inappropriate
Email this Article

Lac repressor

Article Id: WHEBN0000380458
Reproduction Date:

Title: Lac repressor  
Author: World Heritage Encyclopedia
Language: English
Subject: Lac operon, Molecular biology, Post-transcriptional regulation, Transcription factor, DNA-binding domain
Collection: Gene Expression
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Lac repressor

Annotated crystal structure of dimeric LacI. Two monomers (of four total) co-operate to bind each DNA operator sequence. Monomers (red and blue) contain DNA binding and core domains (labeled) which are connected by a linker (labeled). The C-terminal tetramerization helix is not shown. The repressor is shown in complex with operator DNA (gold) and ONPF (green), an anti-inducer ligand (i.e. a stabilizer of DNA binding)

The lac repressor is a DNA-binding protein which inhibits the expression of genes coding for proteins involved in the metabolism of lactose in bacteria. These genes are repressed when lactose is not available to the cell, ensuring that the bacterium only invests energy in the production of machinery necessary for uptake and utilization of lactose when lactose is present. When lactose becomes available, it is converted into allolactose, which inhibits the lac repressor's DNA binding ability. Loss of DNA binding by the lac repressor is required for transcriptional activation of the operon.

Contents

  • Function 1
  • Structure 2
  • Discovery 3
  • See also 4
  • References 5
  • External links 6

Function

The lac repressor (LacI) operates by a helix-turn-helix motif in its DNA binding domain binding base-specifically to the major groove of the operator region of the lac operon, with base contacts also made by residues of symmetry-related alpha helices, the "hinge" helices, which bind deeply in the minor groove.[1] This DNA binding causes the specific affinity of RNA polymerase for the promoter sequence to increase sufficiently that it cannot escape the promoter region and enter elongation, and so prevents transcription of the mRNA coding for the Lac proteins.[2] When lactose is present, allolactose binds to the lac repressor, causing an allosteric change in its shape. In its changed state, the lac repressor is unable to bind tightly to its cognate operator. This effect is referred to as induction, because it induces, rather than represses, expression of the metabolic genes. In vitro, Isopropyl β-D-1-thiogalactopyranoside (IPTG) is a commonly used allolactose mimic which can be used to induce transcription of genes being regulated by lac repressor.

Structure

Tetrameric LacI binds two operator sequences and induces DNA looping. Two dimeric LacI functional subunits (red+blue and green+orange) each bind a DNA operator sequence (labeled). These two functional subunits are coupled at the tetramerization region (labeled); thus, tetrameric LacI binds two operator sequences. This allows tetrameric LacI to induce DNA looping.

Structurally, the lac repressor protein is a homo-tetramer. The tetramer contains two DNA binding subunits composed of two monomers each (sometimes called "dimeric lac repressor"). These subunits dimerize to form a tetramer capable of binding two operator sequences. Each monomer [3][4][5] consists of four distinct regions:

  • an N-terminal DNA-binding domain (in which two LacI proteins bind a single operator site)
  • a regulatory domain (sometimes called the core domain, which binds allolactose, an allosteric effector molecule)
  • a linker that connects the DNA-binding domain with the core domain (sometimes called the hinge helix, which is important for allosteric communication[5])
  • a C-terminal tetramerization region (which joins four monomers in an alpha-helix bundle)

DNA binding occurs via an N-terminal helix-turn-helix structural motif and is targeted to one of several operator DNA sequences (known as O1, O2 and O3). The O1 operator sequence slightly overlaps with the promoter, which increases the affinity of RNA polymerase for the promoter sequence such that it cannot enter elongation and remains in Abortive initiation. Additionally, because each tetramer contains two DNA-binding subunits, binding of multiple operator sequences by a single tetramer induces DNA looping.[6]

Discovery

The lac repressor was first isolated by Walter Gilbert and Benno Müller-Hill in 1966.[7] They were able to show, in vitro, that the protein bound to DNA containing the lac operon, and released the DNA when IPTG was added. (IPTG is an allolactose analog.) They were also able to isolate the portion of DNA bound by the protein by using the enzyme deoxyribonuclease, which breaks down DNA. After treatment of the repressor-DNA complex, some DNA remained, suggesting that it had been masked by the repressor. This was later confirmed.

These experiments confirmed the mechanism of the lac operon, earlier proposed by Jacques Monod and Francois Jacob.

See also

References

  1. ^ Schumacher, M. A.; Choi, K. Y.; Zalkin, H; Brennan, R. G. (1994). "Crystal structure of LacI member, PurR, bound to DNA: Minor groove binding by alpha helices". Science (New York, N.Y.) 266 (5186): 763–70.  
  2. ^ http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2715899/
  3. ^ Goodsell, D. S. (2003). "Lac Repressor". RCSB Protein Data Bank.  
  4. ^ Lewis, M. (Jun 2005). "The lac repressor". Comptes rendus biologies 328 (6): 521–548.  
  5. ^ a b Swint-Kruse, L.; Matthews, K. S. (2009). "Allostery in the LacI/GalR Family: Variations on a Theme". Current Opinion in Microbiology 12 (2): 129–137.  
  6. ^ Oehler, S.; Eismann, E. R.; Krämer, H.; Müller-Hill, B. (1990). "The three operators of the lac operon cooperate in repression". The EMBO Journal 9 (4): 973–979.  
  7. ^  

External links

  • Lac Repressors at the US National Library of Medicine Medical Subject Headings (MeSH)
  • More information on the lac repressor molecule on protein database
  • Lac Repressor in Proteopedia.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.