World Library  
Flag as Inappropriate
Email this Article

Lipinski's rule of five

Article Id: WHEBN0000826713
Reproduction Date:

Title: Lipinski's rule of five  
Author: World Heritage Encyclopedia
Language: English
Subject: Christopher A. Lipinski, Fragment-based lead discovery, Druglikeness, Drug discovery, FIASMA
Collection: Cheminformatics, Drug Discovery, Medicinal Chemistry, Pharmaceutical Industry, Pharmacology
Publisher: World Heritage Encyclopedia

Lipinski's rule of five

Lipinski's rule of five also known as the Pfizer's rule of five or simply the Rule of five (RO5) is a rule of thumb to evaluate druglikeness or determine if a chemical compound with a certain pharmacological or biological activity has properties that would make it a likely orally active drug in humans. The rule was formulated by Christopher A. Lipinski in 1997, based on the observation that most orally administered drugs are relatively small and moderately lipophilic molecules.[1][2]

The rule describes molecular properties important for a drug's pharmacokinetics in the human body, including their absorption, distribution, metabolism, and excretion ("ADME"). However, the rule does not predict if a compound is pharmacologically active.

The rule is important to keep in mind during drug discovery when a pharmacologically active lead structure is optimized step-wise to increase the activity and selectivity of the compound as well as to ensure drug-like physicochemical properties are maintained as described by Lipinski's rule.[3] Candidate drugs that conform to the RO5 tend to have lower attrition rates during clinical trials and hence have an increased chance of reaching the market.[2][4]


  • Components of the rule 1
  • Variants 2
  • Lead-like 3
  • See also 4
  • References 5
  • External links 6

Components of the rule

Lipinski's rule states that, in general, an orally active drug has no more than one violation of the following criteria:

Note that all numbers are multiples of five, which is the origin of the rule's name. As with many other rules of thumb, (such as Baldwin's rules for ring closure), there are many exceptions to Lipinski's Rule.


In an attempt to improve the predictions of druglikeness, the rules have spawned many extensions, for example the following:[6]

  • Partition coefficient log P in −0.4 to +5.6 range
  • Molar refractivity from 40 to 130
  • Molecular weight from 180 to 500
  • Number of atoms from 20 to 70 (includes H-bond donors [e.g.;OH's and NH's] and H-bond acceptors [e.g.; N's and O's])
  • Polar surface area no greater than 140 Ǻ2

Also the 500 molecular weight cutoff has been questioned. Polar surface area and the number of rotatable bonds has been found to better discriminate between compounds that are orally active and those that are not for a large data set of compounds in the rat.[7] In particular, compounds which meet only the two criteria of:

  • 10 or fewer rotatable bonds and
  • polar surface area equal to or less than 140 Å2

are predicted to have good oral bioavailability.[7]


During drug discovery, lipophilicity and molecular weight are often increased in order to improve the affinity and selectivity of the drug candidate. Hence it is often difficult to maintain drug-likeness (i.e., RO5 compliance) during hit and lead optimization. Hence it has been proposed that members of screening libraries from which hits are discovered should be biased toward lower molecular weight and lipophility so that medicinal chemists will have an easier time in delivering optimized drug development candidates that are also drug-like. Hence the rule of five has been extended to the rule of three (RO3) for defining lead-like compounds.[8]

A rule of three compliant compound is defined as one that has:

See also


  1. ^ Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (March 2001). "Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings". Adv. Drug Deliv. Rev. 46 (1-3): 3–26.  
  2. ^ a b Lipinski CA (December 2004). "Lead- and drug-like compounds: the rule-of-five revolution". Drug Discovery Today: Technologies 1 (4): 337–341.  
  3. ^ Oprea TI, Davis AM, Teague SJ, Leeson PD (2001). "Is there a difference between leads and drugs? A historical perspective". J Chem Inf Comput Sci 41 (5): 1308–15.  
  4. ^ Leeson PD, Springthorpe B (November 2007). "The influence of drug-like concepts on decision-making in medicinal chemistry". Nat Rev Drug Discov 6 (11): 881–90.  
  5. ^ Leo A, Hansch C, Elkins D (1971). "Partition coefficients and their uses". Chem Rev 71 (6): 525–616.  
  6. ^ Ghose AK, Viswanadhan VN, Wendoloski JJ (January 1999). "A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases". J Comb Chem 1 (1): 55–68.  
  7. ^ a b Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (June 2002). "Molecular properties that influence the oral bioavailability of drug candidates". J. Med. Chem. 45 (12): 2615–23.  
  8. ^ Congreve M, Carr R, Murray C, Jhoti H (October 2003). "A 'rule of three' for fragment-based lead discovery?". Drug Discov. Today 8 (19): 876–7.  

External links

  • Interactive Rule of Five calculator
  • Free online calculations of Hydrogen bond donor/acceptor, mass and logP using ChemAxon's Marvin and Calculator Plugins – requires Java
  • Calculation of Druglikeness – requires Java
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.