This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000064597 Reproduction Date:
Karl Ludwig von Bertalanffy (September 19, 1901,
The first articles from Bertalanffy on General Systems Theory:
In the social sciences, Bertalanffy did believe that general systems concepts were applicable, e.g. theories that had been introduced into the field of sociology from a modern systems approach that included “the concept of general system, of feedback, information, communication, etc.” [12] The theorist critiqued classical “atomistic” conceptions of social systems and ideation “such as ‘social physics’ as was often attempted in a reductionist spirit.” [13] Bertalanffy also recognized difficulties with the application of a new general theory to social science due to the complexity of the intersections between natural sciences and human social systems. However, the theory still encouraged for new developments from sociology, to anthropology, economics, political science, and psychology among other areas. Today, Bertalanffy's GST remains a bridge for interdisciplinary study of systems in the social sciences.
In Bertalanffy’s model, the theorist defined general principles of open systems and the limitations of conventional models. He ascribed applications to biology, information theory and cybernetics. Concerning biology, examples from the open systems view suggested they “may suffice to indicate briefly the large fields of application” that could be the “outlines of a wider generalization;” [11] from which, a hypothesis for cybernetics. Although potential applications exist in other areas, the theorist developed only the implications for biology and cybernetics. Bertalanffy also noted unsolved problems, which included continued questions over thermodynamics, thus the unsubstantiated claim that there are physical laws to support generalizations (particularly for information theory), and the need for further research into the problems and potential with the applications of the open system view from physics.
Bertalanffy's contribution to systems theory is best known for his theory of open systems. The system theorist argued that traditional steady state. We may well suspect that many characteristics of living systems which are paradoxical in view of the laws of physics are a consequence of this fact.” [10] However, while closed physical systems were questioned, questions equally remained over whether or not open physical systems could justifiably lead to a definitive science for the application of an open systems view to a general theory of systems.
Foundational to GST are the inter-relationships between elements which all together form the whole.
The biologist is widely recognized for his contributions to science as a systems theorist; specifically, for the development of a theory known as organism over mechanism.
To honor Bertalanffy, ecological systems engineer and scientist Howard T. Odum named the storage symbol of his General Systems Language as the Bertalanffy module (see image right).[9]
The Dynamic Energy Budget theory provides a mechanistic explanation of this model in the case of isomorphs that experience a constant food availability. The inverse of the von Bertalanffy growth rate appears to depend linearly on the ultimate length, when different food levels are compared. The intercept relates to the maintenance costs, the slope to the rate at which reserve is mobilized for use by metabolism. The ultimate length equals the maximum length at high food availabilities.[1]
when r_B is the von Bertalanffy growth rate and L_\infty the ultimate length of the individual. This model was proposed earlier by August Friedrich Robert Pūtter (1879-1929)[7] in 1920 ("Studien ūber physiologische Ähnlichkeit. VI. Wachstumsähnlichkeiten"[8] in Pflūgers Archiv fūr die gesamte Physiologie des Menschen und der Tiere, 180: 298-340).
L'(t) = r_B \left( L_\infty - L(t) \right)
In its simplest version the so-called von Bertalanffy growth equation is expressed as a differential equation of length (L) over time (t):
The individual growth model published by von Bertalanffy in 1934 is widely used in biological models and exists in a number of permutations.
Today, Bertalanffy is considered to be a founder and one of the principal authors of the interdisciplinary school of thought known as general systems theory. According to Weckowicz (1989), he "occupies an important position in the intellectual history of the twentieth century. His contributions went beyond biology, and extended into cybernetics, education, history, philosophy, psychiatry, psychology and sociology. Some of his admirers even believe that this theory will one day provide a conceptual framework for all these disciplines".[2] Spending most of his life in semi-obscurity, Ludwig von Bertalanffy may well be the least known intellectual titan of the twentieth century.[6]
Von Bertalanffy was a professor at the University of Vienna from 1934–48, University of London (1948–49), Université de Montréal (1949), University of Ottawa (1950–54), University of Southern California (1955–58), the Menninger Foundation (1958–60), University of Alberta (1961–68), and State University of New York at Buffalo (SUNY) (1969–72). In 1972, he died from a sudden heart attack.
Von Bertalanffy met his future wife Maria in April 1924 in the Austrian Alps, and were almost never apart for the next forty-eight years.[5] She wanted to finish studying but never did, instead devoting her life to Bertalanffy's career. Later in Canada she would work both for him and with him in his career, and after his death she compiled two of Bertalanffy's last works. They had one child, who would follow in his father's footsteps by making his profession in the field of cancer research.
Ludwig von Bertalanffy grew up as an only child educated at home by private tutors until he was ten. When he went to the gymnasium/grammar school he was already well trained in self study, and kept studying on his own. His neighbour, the famous biologist [4]
Ludwig von Bertalanffy was born and grew up in the little village of Atzgersdorf (now Liesing) near Vienna. The Bertalanffy family had roots in the 16th century nobility of Hungary which included several scholars and court officials.[2] His grandfather Charles Joseph von Bertalanffy (1833–1912) had settled in Austria and was a state theatre director in Klagenfurt, Graz, and Vienna, which were important positions in imperial Austria. Ludwig's father Gustav von Bertalanffy (1861–1919) was a prominent railway administrator. On his mother's side Ludwig's grandfather Joseph Vogel was an imperial counsellor and a wealthy Vienna publisher. Ludwig's mother Charlotte Vogel was seventeen when she married the thirty-four-year-old Gustav. They divorced when Ludwig was ten, and both remarried outside the Catholic Church in civil ceremonies.[3]
Von Bertalanffy grew up in Austria and subsequently worked in Vienna, London, Canada and the USA.
is still in use today. [1]
Berlin, London, Austria, Amsterdam, Rome
Medicine, Ecology, Molecular biology, Botany, Metabolism
Sociology, Social psychology, Memory, Experimental psychology, Psychology
Science, Cybernetics, Control theory, Systems biology, Systems engineering
Oclc, Critical theory, Émile Durkheim, Qualitative research, Philosophy of science
Systems science, Systems engineering, Chaos theory, System, Émile Durkheim
Systems science, Cybernetics, Systems engineering, Systems theory, Science
Neuroscience, Artificial intelligence, Systems engineering, Control theory, Robotics
Systems science, Systems biology, Control theory, Quantum mechanics, Society for General Systems Research