World Library  
Flag as Inappropriate
Email this Article

Ludwig von Bertalanffy

Ludwig von Bertalanffy
Born (1901-09-19)September 19, 1901
Vienna, Austria-Hungary
Died June 12, 1972(1972-06-12) (aged 70)
Buffalo, New York, USA
Fields Biology and systems theory
Alma mater University of Vienna
Known for General System Theory
Influences Rudolf Carnap, Gustav Theodor Fechner, Nicolai Hartmann, Otto Neurath, Moritz Schlick
Influenced Russell L. Ackoff, Kenneth E. Boulding, Peter Checkland, C. West Churchman, Jay Wright Forrester, Ervin László, James Grier Miller, Anatol Rapoport

Karl Ludwig von Bertalanffy (September 19, 1901,

  • International Society for the Systems Sciences' biography of Ludwig von Bertalanffy.
  • International Society for the Systems Sciences' THE PRIMER PROJECT: INTEGRATIVE SYSTEMICS (organismics)
  • Bertalanffy Center for the Study of Systems Science BCSSS in Vienna.
  • Ludwig von Bertalanffy (1901-1972): A Pioneer of General Systems Theory working paper by T.E. Weckowicz, University of Alberta Center for Systems Research.

External links

  1. ^ a b Bertalanffy, L. von, (1934). Untersuchungen über die Gesetzlichkeit des Wachstums. I. Allgemeine Grundlagen der Theorie; mathematische und physiologische Gesetzlichkeiten des Wachstums bei Wassertieren. Arch. Entwicklungsmech., 131:613-652.
  2. ^ a b T.E. Weckowicz (1989). Ludwig von Bertalanffy (1901-1972): A Pioneer of General Systems Theory. Working paper Feb 1989. p.2
  3. ^ Mark Davidson (1983). Uncommon Sense: The Life and Thought of Ludwig Von Bertalanffy. Los Angeles: J. P. Tarcher. p.49
  4. ^ a b Bertalanffy Center for the Study of Systems Science, page: His Life - Bertalanffy's Origins and his First Education. Retrieved 2009-04-27
  5. ^ Davidson p.51
  6. ^ Davidson, p.9.
  7. ^ August Friedrich Robert Pūtter (April 6, 1879 - March 11, 1929) - Wrote a textbook on comparative physiology titled Vergleichende Physiologie (Jena: G. Fischer, 1911) and many other notable works.
  8. ^ "Studies on Physiological Similarity. VI. Analogies of Growth" - For a translation of this article see:
  9. ^ Nicholas D. Rizzo William Gray (Editor), Nicholas D. Rizzo (Editor), (1973) Unity Through Diversity. A Festschrift for Ludwig von Bertalanffy. Gordon & Breach Science Pub
  10. ^ Bertalanffy, L. von, (1969). General System Theory. New York: George Braziller, pp. 39-40
  11. ^ Bertalanffy, L. von, (1969). General System Theory. New York: George Braziller, pp. 139-1540
  12. ^ Bertalanffy, L. von, (1969). General System Theory. New York: George Braziller, pp. 196
  13. ^ Bertalanffy, L. von, (1969). General System Theory. New York: George Braziller, pp. 194-197


  • Sabine Brauckmann (1999). Ludwig von Bertalanffy (1901--1972), ISSS Luminaries of the Systemics Movement, January 1999.
  • Peter Corning (2001). : The Synergism Hypothesis as a General Theory of Biological and Social SystemsFulfilling von Bertalanffy's Vision, ISCS 2001.
  • Mark Davidson (1983). Uncommon Sense: The Life and Thought of Ludwig Von Bertalanffy, Los Angeles: J. P. Tarcher.
  • Debora Hammond (2005). Philosophical and Ethical Foundations of Systems Thinking, tripleC 3(2): pp. 20–27.
  • Ervin László eds. (1972). The Relevance of General Systems Theory: Papers Presented to Ludwig Von Bertalanffy on His Seventieth Birthday, New York: George Braziller, 1972.
  • David Pouvreau (2013). "Une histoire de la 'systémologie générale' de Ludwig von Bertalanffy - Généalogie, genèse, actualisation et postérité d'un projet herméneutique", Doctoral Thesis (1138 pages), Ecole des Hautes Etudes en Sciences Sociales (EHESS), Paris :
  • Thaddus E. Weckowicz (1989). Ludwig von Bertalanffy (1901-1972): A Pioneer of General Systems Theory, Center for Systems Research Working Paper No. 89-2. Edmonton AB: University of Alberta, February 1989.

About Bertalanffy

  • 1945, Zu einer allgemeinen Systemlehre, Blätter für deutsche Philosophie, 3/4. (Extract in: Biologia Generalis, 19 (1949), 139-164.
  • 1950, An Outline of General System Theory, British Journal for the Philosophy of Science 1, p. 114-129.
  • 1951, General system theory - A new approach to unity of science (Symposium), Human Biology, Dec 1951, Vol. 23, p. 303-361.

The first articles from Bertalanffy on General Systems Theory:

  • 1928, Kritische Theorie der Formbildung, Borntraeger. In English: Modern Theories of Development: An Introduction to Theoretical Biology, Oxford University Press, New York: Harper, 1933
  • 1928, Nikolaus von Kues, G. Müller, München 1928.
  • 1930, Lebenswissenschaft und Bildung, Stenger, Erfurt 1930
  • 1937, Das Gefüge des Lebens, Leipzig: Teubner.
  • 1940, Vom Molekül zur Organismenwelt, Potsdam: Akademische Verlagsgesellschaft Athenaion.
  • 1949, Das biologische Weltbild, Bern: Europäische Rundschau. In English: Problems of Life: An Evaluation of Modern Biological and Scientific Thought, New York: Harper, 1952.
  • 1953, Biophysik des Fliessgleichgewichts, Braunschweig: Vieweg. 2nd rev. ed. by W. Beier and R. Laue, East Berlin: Akademischer Verlag, 1977
  • 1953, "Die Evolution der Organismen", in Schöpfungsglaube und Evolutionstheorie, Stuttgart: Alfred Kröner Verlag, pp 53–66
  • 1955, "An Essay on the Relativity of Categories." Philosophy of Science, Vol. 22, No. 4, pp. 243–263.
  • 1959, Stammesgeschichte, Umwelt und Menschenbild, Schriften zur wissenschaftlichen Weltorientierung Vol 5. Berlin: Lüttke
  • 1962, Modern Theories of Development, New York: Harper
  • 1967, Robots, Men and Minds: Psychology in the Modern World, New York: George Braziller, 1969 hardcover: ISBN 0-8076-0428-3, paperback: ISBN 0-8076-0530-1
  • 1968, General System theory: Foundations, Development, Applications, New York: George Braziller, revised edition 1976: ISBN 0-8076-0453-4
  • 1968, The Organismic Psychology and Systems Theory, Heinz Werner lectures, Worcester: Clark University Press.
  • 1975, Perspectives on General Systems Theory. Scientific-Philosophical Studies, E. Taschdjian (eds.), New York: George Braziller, ISBN 0-8076-0797-5
  • 1981, A Systems View of Man: Collected Essays, editor Paul A. LaViolette, Boulder: Westview Press, ISBN 0-86531-094-7

By Bertalanffy


See also

In the social sciences, Bertalanffy did believe that general systems concepts were applicable, e.g. theories that had been introduced into the field of sociology from a modern systems approach that included “the concept of general system, of feedback, information, communication, etc.” [12] The theorist critiqued classical “atomistic” conceptions of social systems and ideation “such as ‘social physics’ as was often attempted in a reductionist spirit.” [13] Bertalanffy also recognized difficulties with the application of a new general theory to social science due to the complexity of the intersections between natural sciences and human social systems. However, the theory still encouraged for new developments from sociology, to anthropology, economics, political science, and psychology among other areas. Today, Bertalanffy's GST remains a bridge for interdisciplinary study of systems in the social sciences.

Systems in the social sciences

In Bertalanffy’s model, the theorist defined general principles of open systems and the limitations of conventional models. He ascribed applications to biology, information theory and cybernetics. Concerning biology, examples from the open systems view suggested they “may suffice to indicate briefly the large fields of application” that could be the “outlines of a wider generalization;” [11] from which, a hypothesis for cybernetics. Although potential applications exist in other areas, the theorist developed only the implications for biology and cybernetics. Bertalanffy also noted unsolved problems, which included continued questions over thermodynamics, thus the unsubstantiated claim that there are physical laws to support generalizations (particularly for information theory), and the need for further research into the problems and potential with the applications of the open system view from physics.

Bertalanffy's contribution to systems theory is best known for his theory of open systems. The system theorist argued that traditional steady state. We may well suspect that many characteristics of living systems which are paradoxical in view of the laws of physics are a consequence of this fact.” [10] However, while closed physical systems were questioned, questions equally remained over whether or not open physical systems could justifiably lead to a definitive science for the application of an open systems view to a general theory of systems.

Open systems

Foundational to GST are the inter-relationships between elements which all together form the whole.

The biologist is widely recognized for his contributions to science as a systems theorist; specifically, for the development of a theory known as organism over mechanism.

General System Theory (GST)

To honor Bertalanffy, ecological systems engineer and scientist Howard T. Odum named the storage symbol of his General Systems Language as the Bertalanffy module (see image right).[9]

Bertalanffy Module

Passive electrical schematic of the Bertalanffy module together with equivalent expression in the Energy Systems Language

The Dynamic Energy Budget theory provides a mechanistic explanation of this model in the case of isomorphs that experience a constant food availability. The inverse of the von Bertalanffy growth rate appears to depend linearly on the ultimate length, when different food levels are compared. The intercept relates to the maintenance costs, the slope to the rate at which reserve is mobilized for use by metabolism. The ultimate length equals the maximum length at high food availabilities.[1]

when r_B is the von Bertalanffy growth rate and L_\infty the ultimate length of the individual. This model was proposed earlier by August Friedrich Robert Pūtter (1879-1929)[7] in 1920 ("Studien ūber physiologische Ähnlichkeit. VI. Wachstumsähnlichkeiten"[8] in Pflūgers Archiv fūr die gesamte Physiologie des Menschen und der Tiere, 180: 298-340).

L'(t) = r_B \left( L_\infty - L(t) \right)

In its simplest version the so-called von Bertalanffy growth equation is expressed as a differential equation of length (L) over time (t):

The individual growth model published by von Bertalanffy in 1934 is widely used in biological models and exists in a number of permutations.

The individual growth model

Today, Bertalanffy is considered to be a founder and one of the principal authors of the interdisciplinary school of thought known as general systems theory. According to Weckowicz (1989), he "occupies an important position in the intellectual history of the twentieth century. His contributions went beyond biology, and extended into cybernetics, education, history, philosophy, psychiatry, psychology and sociology. Some of his admirers even believe that this theory will one day provide a conceptual framework for all these disciplines".[2] Spending most of his life in semi-obscurity, Ludwig von Bertalanffy may well be the least known intellectual titan of the twentieth century.[6]


Von Bertalanffy was a professor at the University of Vienna from 1934–48, University of London (1948–49), Université de Montréal (1949), University of Ottawa (1950–54), University of Southern California (1955–58), the Menninger Foundation (1958–60), University of Alberta (1961–68), and State University of New York at Buffalo (SUNY) (1969–72). In 1972, he died from a sudden heart attack.

Von Bertalanffy met his future wife Maria in April 1924 in the Austrian Alps, and were almost never apart for the next forty-eight years.[5] She wanted to finish studying but never did, instead devoting her life to Bertalanffy's career. Later in Canada she would work both for him and with him in his career, and after his death she compiled two of Bertalanffy's last works. They had one child, who would follow in his father's footsteps by making his profession in the field of cancer research.

Ludwig von Bertalanffy grew up as an only child educated at home by private tutors until he was ten. When he went to the gymnasium/grammar school he was already well trained in self study, and kept studying on his own. His neighbour, the famous biologist [4]

Ludwig von Bertalanffy was born and grew up in the little village of Atzgersdorf (now Liesing) near Vienna. The Bertalanffy family had roots in the 16th century nobility of Hungary which included several scholars and court officials.[2] His grandfather Charles Joseph von Bertalanffy (1833–1912) had settled in Austria and was a state theatre director in Klagenfurt, Graz, and Vienna, which were important positions in imperial Austria. Ludwig's father Gustav von Bertalanffy (1861–1919) was a prominent railway administrator. On his mother's side Ludwig's grandfather Joseph Vogel was an imperial counsellor and a wealthy Vienna publisher. Ludwig's mother Charlotte Vogel was seventeen when she married the thirty-four-year-old Gustav. They divorced when Ludwig was ten, and both remarried outside the Catholic Church in civil ceremonies.[3]



  • Biography 1
  • Work 2
    • The individual growth model 2.1
    • Bertalanffy Module 2.2
    • General System Theory (GST) 2.3
    • Open systems 2.4
    • Systems in the social sciences 2.5
  • See also 3
  • Publications 4
    • By Bertalanffy 4.1
    • About Bertalanffy 4.2
  • References 5
  • External links 6

Von Bertalanffy grew up in Austria and subsequently worked in Vienna, London, Canada and the USA.

is still in use today. [1]

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.