World Library  
Flag as Inappropriate
Email this Article

Multiple access method

Article Id: WHEBN0007572499
Reproduction Date:

Title: Multiple access method  
Author: World Heritage Encyclopedia
Language: English
Subject: Orthogonal frequency-division multiplexing, Radio resource management
Publisher: World Heritage Encyclopedia

Multiple access method

In telecommunications and computer networks, a channel access method or multiple access method allows several terminals connected to the same multi-point transmission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks, star networks and half-duplex point-to-point links.

A channel-access scheme is based on a multiplexing method, that allows several data streams or signals to share the same communication channel or physical medium. Multiplexing is in this context provided by the physical layer. Note that multiplexing also may be used in full-duplex point-to-point communication between nodes in a switched network, which should not be considered as multiple access.

A channel-access scheme is also based on a multiple access protocol and control mechanism, also known as media access control (MAC). This protocol deals with issues such as addressing, assigning multiplex channels to different users, and avoiding collisions. The MAC-layer is a sub-layer in Layer 2 (Data Link Layer) of the OSI model and a component of the Link Layer of the TCP/IP model.

Fundamental types of channel access schemes

These are the four fundamental types of channel access schemes:

Frequency Division Multiple Access (FDMA)

The frequency-division multiple access (FDMA) channel-access scheme is based on the frequency-division multiplexing (FDM) scheme, which provides different frequency bands to different data-streams. In the FDMA case, the data streams are allocated to different nodes or devices. An example of FDMA systems were the first-generation (1G) cell-phone systems, where each phone call was assigned to a specific uplink frequency channel, and another downlink frequency channel. Each message signal (each phone call) is modulated on a specific carrier frequency.

A related technique is wavelength division multiple access (WDMA), based on wavelength-division multiplexing (WDM), where different datastreams get different colors in fiber-optical communications. In the WDMA case, different network nodes in a bus or hub network get a different color.

An advanced form of FDMA is the orthogonal frequency-division multiple access (OFDMA) scheme, for example used in 4G cellular communication systems. In OFDMA, each node may use several sub-carriers, making it possible to provide different quality of service (different data rates) to different users. The assignment of sub-carriers to users may be changed dynamically, based on the current radio channel conditions and traffic load.

Time division multiple access (TDMA)

The time division multiple access (TDMA) channel access scheme is based on the time-division multiplexing (TDM) scheme, which provides different time-slots to different data-streams (in the TDMA case to different transmitters) in a cyclically repetitive frame structure. For example, node 1 may use time slot 1, node 2 time slot 2, etc. until the last transmitter. Then it starts all over again, in a repetitive pattern, until a connection is ended and that slot becomes free or assigned to another node. An advanced form is Dynamic TDMA (DTDMA), where a scheduling may give different time sometimes but some times node 1 may use time slot 1 in first frame and use another time slot in next frame.

As an example, 2G cellular systems are based on a combination of TDMA and FDMA. Each frequency channel is divided into eight timeslots, of which seven are used for seven phone calls, and one for signalling data.

Packet mode multiple-access

Packet mode multiple-access is typically also based on time-domain multiplexing, but not in a cyclically repetitive frame structure, and therefore it is not considered as TDM or TDMA. Due to its random character it can be categorised as statistical multiplexing methods, making it possible to provide dynamic bandwidth allocation. This require a media access control (MAC) protocol, i.e. a principle for the nodes to take turns on the channel and to avoid collisions. Common examples are CSMA/CD, used in Ethernet bus networks and hub networks, and CSMA/CA, used in wireless networks such as IEEE 802.11.

Code division multiple access (CDMA)/Spread spectrum multiple access (SSMA)

The code division multiple access (CDMA) scheme is based on spread spectrum, meaning that a wider radio spectrum in Hertz is used than the data rate of each of the transferred bit streams, and several message signals are transferred simultaneously over the same carrier frequency, utilizing different spreading codes. The wide bandwidth makes it possible to send with a very poor signal-to-noise ratio of much less than 1 (less than 0 dB) according to the Shannon-Heartly formula, meaning that the transmission power can be reduced to a level below the level of the noise and co-channel interference (cross talk) from other message signals sharing the same frequency.

One form is direct sequence spread spectrum (DS-CDMA), used for example in 3G cell phone systems. Each information bit (or each symbol) is represented by a long code sequence of several pulses, called chips. The sequence is the spreading code, and each message signal (for example each phone call) use different spreading code.

Another form is frequency-hopping (FH-CDMA), where the channel frequency is changing very rapidly according to a sequency that constitute the spreading code. As an example, the Bluetooth communication system is based on a combination of frequency-hopping and either CSMA/CA packet mode communication (for data communication applications) or TDMA (for audio transmission). All nodes belonging to the same user (to the same virtual private area network or piconet) use the same frequency hopping sequency synchronously, meaning that they send on the same frequency channel, but CDMA/CA or TDMA is used to avoid collisions within the VPAN. Frequency-hopping is used to reduce the cross-talk and collision probability between nodes in different VPAN:s.

Space division multiple access (SDMA)

Space division multiple access (SDMA).

List of channel access methods

Circuit mode and channelization methods

The following are common circuit mode and channelization channel access methods:

Packet mode methods

The following are examples of packet mode channel access methods:

Duplexing methods

Where these methods are used for dividing forward and reverse communication channels, they are known as duplexing methods, such as:

Hybrid channel access scheme application examples

Note that hybrids of these techniques can be - and frequently are - used. Some examples:

  • The GSM cellular system combines the use of frequency division duplex (FDD) to prevent interference between outward and return signals, with FDMA and TDMA to allow multiple handsets to work in a single cell.
  • GSM with the GPRS packet switched service combines FDD and FDMA with slotted Aloha for reservation inquiries, and a Dynamic TDMA scheme for transferring the actual data.
  • Bluetooth packet mode communication combines frequency hopping (for shared channel access among several private area networks in the same room) with CSMA/CA (for shared channel access inside a medium).
  • IEEE 802.11b wireless local area networks (WLANs) are based on FDMA and DS-CDMA for avoiding interference among adjacent WLAN cells or access points. This is combined with CSMA/CA for multiple access within the cell.
  • HIPERLAN/2 wireless networks combine FDMA with dynamic TDMA, meaning that resource reservation is achieved by packet scheduling.
  •, an ITU-T standard for high-speed networking over home wiring (power lines, phone lines and coaxial cables) employs a combination of TDMA, Token passing and CSMA/CARP to allow multiple devices to share the medium.

Definition within certain application areas

Local and metropolitan area networks

In local area networks (LANs) and metropolitan area networks (MANs), multiple access methods enable bus networks, ring networks, hubbed networks, wireless networks and half duplex point-to-point communication, but are not required in full duplex point-to-point serial lines between network switches and routers, or in switched networks (logical star topology). The most common multiple access method is CSMA/CD, which is used in Ethernet. Although today's Ethernet installations typically are switched, CSMA/CD is utilized anyway to achieve compatibility with hubs.

Satellite communications

In satellite communications, multiple access is the capability of a communications satellite to function as a portion of a communications link between more than one pair of satellite terminals concurrently. Three types of multiple access presently used with communications satellites are code-division, frequency-division, and time-division multiple access.

Switching centers

In telecommunication switching centers, multiple access is the connection of a user to two or more switching centers by separate access lines using a single message routing indicator or telephone number.

Classifications in the literature

Several ways of categorizing multiple-access schemes and protocols have been used in the literature. For example, Daniel Minoli (2009)[1] identifies five principal types of multiple-access schemes: FDMA, TDMA, CDMA, SDMA, and Random access. R. Rom and M. Sidi (1990)[2] categorize the protocols into Conflict-free access protocols, Aloha protocols, and Carrier Sensing protocols.

The Telecommunications Handbook (Terplan and Morreale, 2000)[3] identifies the following MAC categories:

  • Fixed assigned: TDMA, FDMA+WDMA, CDMA, SDMA
  • Demand assigned (DA)
    • Polling: Generalized polling, Distributed polling, Token Passing, Implicit polling, Slotted access
  • Random access (RA): Pure RA (ALOHA, GRA), Adaptive RA (TRA), CSMA, CSMA/CD, CSMA/CA

See also


 This article incorporates MIL-STD-188).

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.