This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000019702 Reproduction Date:
In evolution, cancer, and the development of the immune system.
Mutation can result in several different types of change in sequences. Mutations in genes can either have no effect, alter the DNA repair to prevent or correct (revert the mutated sequence back to its original state) mutations.[1]
Mutations can involve the duplication of large sections of DNA, usually through genetic recombination.[5] These duplications are a major source of raw material for evolving new genes, with tens to hundreds of genes duplicated in animal genomes every million years.[6] Most genes belong to larger families of genes of shared ancestry.[7] Novel genes are produced by several methods, commonly through the duplication and mutation of an ancestral gene, or by recombining parts of different genes to form new combinations with new functions.[8][9]
Here, domains act as modules, each with a particular and independent function, that can be mixed together to produce genes encoding new proteins with novel properties.[10] For example, the human eye uses four genes to make structures that sense light: three for color vision and one for night vision; all four arose from a single ancestral gene.[11] Another advantage of duplicating a gene (or even an entire genome) is that this increases redundancy; this allows one gene in the pair to acquire a new function while the other copy performs the original function.[12][13] Other types of mutation occasionally create new genes from previously noncoding DNA.[14][15]
Changes in chromosome number may involve even larger mutations, where segments of the DNA within chromosomes break and then rearrange. For example, in the Homininae, two chromosomes fused to produce human chromosome 2; this fusion did not occur in the lineage of the other apes, and they retain these separate chromosomes.[16] In evolution, the most important role of such chromosomal rearrangements may be to accelerate the divergence of a population into new species by making populations less likely to interbreed, thereby preserving genetic differences between these populations.[17]
Sequences of DNA that can move about the genome, such as transposons, make up a major fraction of the genetic material of plants and animals, and may have been important in the evolution of genomes.[18] For example, more than a million copies of the Alu sequence are present in the human genome, and these sequences have now been recruited to perform functions such as regulating gene expression.[19] Another effect of these mobile DNA sequences is that when they move within a genome, they can mutate or delete existing genes and thereby produce genetic diversity.[2]
Nonlethal mutations accumulate within the gene pool and increase the amount of genetic variation.[20] The abundance of some genetic changes within the gene pool can be reduced by natural selection, while other "more favorable" mutations may accumulate and result in adaptive changes.
For example, a butterfly may produce offspring with new mutations. The majority of these mutations will have no effect; but one might change the color of one of the butterfly's offspring, making it harder (or easier) for predators to see. If this color change is advantageous, the chance of this butterfly's surviving and producing its own offspring are a little better, and over time the number of butterflies with this mutation may form a larger percentage of the population.
somatic cells.
Beneficial mutations can improve reproductive success.
Four classes of mutations are (1) spontaneous mutations (molecular decay), (2) mutations due to error prone replication bypass of naturally occurring DNA damage (also called error prone translesion synthesis), (3) errors introduced during DNA repair, and (4) induced mutations caused by mutagens. Scientists may also deliberately introduce mutant sequences through DNA manipulation for the sake of scientific experimentation.
Spontaneous mutations on the molecular level can be caused by:[21]
There is increasing evidence that the majority of spontaneously arising mutations are due to error prone replication (translesion synthesis) past a DNA damage in the template strand. As described in the article DNA damage (naturally occurring), naturally occurring DNA damages arise about 60,000 to 100,000 times per day per mammalian cell. In mice, the majority of mutations are caused by translesion synthesis.[22] Likewise, in yeast, Kunz et al.[23] found that less than 60% of the spontaneous single base pair substitutions and deletions were caused by translesion synthesis.
Although naturally occurring double-strand breaks occur at a relatively low frequency in DNA (see DNA damage (naturally occurring)) their repair often causes mutation. Non-homologous end joining (NHEJ) is a major pathway for repairing double-strand breaks. NHEJ involves removal of a few nucleotides to allow somewhat inaccurate alignment of the two ends for rejoining followed by addition of nucleotides to fill in gaps. As a consequence, NHEJ often introduces mutations.[24]
Induced mutations on the molecular level can be caused by:-
The sequence of a gene can be altered in a number of ways. Gene mutations have varying effects on health depending on where they occur and whether they alter the function of essential proteins. Mutations in the structure of genes can be classified as:
See also Behavior mutation.
In applied genetics, it is usual to speak of mutations as either harmful or beneficial.
In reality, viewing the fitness effects of mutations in these discrete categories is an oversimplification. Attempts have been made to infer the distribution of fitness effects (DFE) using mutagenesis experiments and theoretical models applied to molecular sequence data. Distribution of fitness effects, as used to determine the relative abundance of different types of mutations (i.e., strongly deleterious, nearly neutral or advantageous), is relevant to many evolutionary questions, such as the maintenance of genetic variation,[36] the rate of genomic decay,[37] the maintenance of outcrossing sexual reproduction as opposed to inbreeding[38] and the evolution of sex and recombination.[39] In summary, DFE plays an important role in predicting evolutionary dynamics.[40][41] A variety of approaches have been used to study the distribution of fitness effects, including theoretical, experimental and analytical methods.
One of the earliest theoretical studies of the distribution of fitness effects was done by Motoo Kimura, an influential theoretical population geneticist. His neutral theory of molecular evolution proposes that most novel mutations will be highly deleterious, with a small fraction being neutral.[53][54] Hiroshi Akashi more recently proposed a bimodal model for DFE, with modes centered around highly deleterious and neutral mutations.[55] Both theories agree that the vast majority of novel mutations are neutral or deleterious and that advantageous mutations are rare, which has been supported by experimental results. One example is a study done on the distribution of fitness effects of random mutations in vesicular stomatitis virus.[42] Out of all mutations, 39.6% were lethal, 31.2% were non-lethal deleterious, and 27.1% were neutral. Another example comes from a high throughput mutagenesis experiment with yeast.[47] In this experiment it was shown that the overall distribution of fitness effects is bimodal, with a cluster of neutral mutations, and a broad distribution of deleterious mutations.
Though relatively few mutations are advantageous, those that are play an important role in evolutionary changes.[56] Like neutral mutations, weakly selected advantageous mutations can be lost due to random genetic drift, but strongly selected advantageous mutations are more likely to be fixed. Knowing the distribution of fitness effects of advantageous mutations may lead to increased ability to predict the evolutionary dynamics. Theoretical work on the DFE for advantageous mutations has been done by John H. Gillespie[57] and H. Allen Orr.[58] They proposed that the distribution for advantageous mutations should be exponential under a wide range of conditions, which, in general, has been supported by experimental studies, at least for strongly selected advantageous mutations.[59][60][61]
In general, it is accepted that the majority of mutations are neutral or deleterious, with rare mutations being advantageous; however, the proportion of types of mutations varies between species. This indicates two important points: first, the proportion of effectively neutral mutations is likely to vary between species, resulting from dependence on effective population size; second, the average effect of deleterious mutations varies dramatically between species.[20] In addition, the DFE also differs between coding regions and non-coding regions, with the DFE of non-coding DNA containing more weakly selected mutations.[20]
In reproductive cells, mutations can be subdivided into germ line mutations, which can be passed on to descendants through their reproductive cells, and somatic mutations (also called acquired mutations),[63] which involve cells outside the dedicated reproductive group and which are not usually transmitted to descendants.
A germline mutation gives rise to a constitutional mutation in the offspring, that is, a mutation that is present in every cell. A constitutional mutation can also occur very soon after fertilisation, or continue from a previous constitutional mutation in a parent.[64]
The distinction between germline and somatic mutations is important in animals that have a dedicated germ line to produce reproductive cells. However, it is of little value in understanding the effects of mutations in plants, which lack dedicated germ line. The distinction is also blurred in those animals that reproduce de novo mutation.
Diploid organisms (e.g., humans) contain two copies of each gene — a paternal and a maternal allele. Based on the occurrence of mutation on each chromosome, we may classify mutations into three types.
A wildtype or homozygous non-mutated organism is one in which neither allele is mutated.
In order to categorize a mutation as such, the "normal" sequence must be obtained from the DNA of a "normal" or "healthy" organism (as opposed to a "mutant" or "sick" one), it should be identified and reported; ideally, it should be made publicly available for a straightforward nucleotide-by-nucleotide comparison, and agreed upon by the scientific community or by a group of expert geneticists and biologists, who have the responsibility of establishing the standard or so-called "consensus" sequence. This step requires a tremendous scientific effort. (See DNA sequencing.) Once the consensus sequence is known, the mutations in a genome can be pinpointed, described, and classified. The committee of the Human Genome Variation Society (HGVS) has developed the standard human sequence variant nomenclature,[66] which should be used by researchers and DNA diagnostic centers to generate unambiguous mutation descriptions. In principle, this nomenclature can also be used to describe mutations in other organisms. The nomenclature specifies the type of mutation and base or amino acid changes.
mutator strains).
According to one study, two children of different parents had 35 and 49 new mutations. Of them, in one case 92% were from the paternal germline, in another case, 64% were from the maternal germline.[67]
Changes in DNA caused by mutation can cause errors in protein sequence, creating partially or completely non-functional proteins. Each cell, in order to function correctly, depends on thousands of proteins to function in the right places at the right times. When a mutation alters a protein that plays a critical role in the body, a medical condition can result. A condition caused by mutations in one or more genes is called a genetic disorder. Some mutations alter a gene's DNA base sequence but do not change the function of the protein made by the gene. One study on the comparison of genes between different species of Drosophila suggests that if a mutation does change a protein, this will probably be harmful, with an estimated 70 percent of amino acid polymorphisms having damaging effects, and the remainder being either neutral or weakly beneficial.[4] Studies have shown that only 7% of point mutations in non-coding DNA of yeast are deleterious and 12% in coding DNA are deleterious. The rest of the mutations are either neutral or slightly beneficial.[68]
If a mutation is present in a cancer.[69]
A DNA damage can cause an error when the DNA is replicated, and this error of replication can cause a gene mutation that, in turn, could cause a genetic disorder. DNA damages are repaired by the DNA repair system of the cell. Each cell has a number of pathways through which enzymes recognize and repair damages in DNA. Because DNA can be damaged in many ways, the process of DNA repair is an important way in which the body protects itself from disease. Once a DNA damage has given rise to a mutation, the mutation cannot be repaired. DNA repair pathways can only recognize and act on "abnormal" structures in the DNA. Once a mutation occurs in a gene sequence it then has normal DNA structure and cannot be repaired.
Although mutations that cause change in protein sequences can be harmful to an organism; on occasions, the effect may be positive in a given environment. In this case, the mutation may enable the mutant organism to withstand particular environmental stresses better than wild-type organisms, or reproduce more quickly. In these cases a mutation will tend to become more common in a population through natural selection.
For example, a specific 32 base pair deletion in human CCR5 (CCR5-Δ32) confers HIV resistance to homozygotes and delays AIDS onset in heterozygotes.[70] One possible explanation of the etiology of the relatively high frequency of CCR5-Δ32 in the European population is that it conferred resistance to the bubonic plague in mid-14th century Europe. People with this mutation were more likely to survive infection; thus its frequency in the population increased.[71] This theory could explain why this mutation is not found in southern Africa, which remained untouched by bubonic plague. A newer theory suggests that the selective pressure on the CCR5 Delta 32 mutation was caused by smallpox instead of the bubonic plague.[72]
Another example is Sickle-cell disease, a blood disorder in which the body produces an abnormal type of the oxygen-carrying substance hemoglobin in the red blood cells. One-third of all indigenous inhabitants of Sub-Saharan Africa carry the gene,[73] because, in areas where malaria is common, there is a survival value in carrying only a single sickle-cell gene (sickle-cell trait).[74] Those with only one of the two alleles of the sickle-cell disease are more resistant to malaria, since the infestation of the malaria plasmodium is halted by the sickling of the cells that it infests.
Prions are proteins and do not contain genetic material. However, prion replication has been shown to be subject to mutation and natural selection just like other forms of replication.[75]
A change in the genetic structure that is not inherited from a parent, and also not passed to offspring, is called a somatic cell genetic mutation or acquired mutation.[76]
Cells with heterozygous mutations (one good copy of gene and one mutated copy) may function normally with the unmutated copy until the good copy has been spontaneously somatically mutated. This kind of mutation happens all the time in living organisms, but it is difficult to measure the rate. Measuring this rate is important in predicting the rate at which people may develop cancer.[77]
Point mutations may arise from spontaneous mutations that occur during DNA replication. The rate of mutation may be increased by mutagens. Mutagens can be physical, such as radiation from UV rays, X-rays or extreme heat, or chemical (molecules that misplace base pairs or disrupt the helical shape of DNA). Mutagens associated with cancers are often studied to learn about cancer and its prevention.
The aim of gain-of-function (GOF) research is to genetically engineer increased transmissibility, virulence, or host range of pathogens. As such, it has been extremely controversial. As a Nature editorial put it in October 2014, "revelations over the past few months of serious violations and accidents at some of the leading biosafety containment labs in the United States has burst the hubris that some scientists, and their institutions, have in their perceived ability to work safely with dangerous pathogens."[78] There is a current moratorium on such work in the United States.
Pininfarina Nido, Pininfarina, Jesper deClaville Christiansen
Medicine, Ecology, Molecular biology, Botany, Metabolism
Speciation, Evolution, Biology, Paleontology, Ecology
Evolution, Mutation, Evolutionary biology, Extinction, Human evolution
Evolution, Speciation, Mutation, Natural selection, Population
Gene, Mutation, Allele, Genetics, Sabino horse
Evolution, Biology, Mutation, Epigenetics, Ecology
Evolution, Mutation, Speciation, Evolutionary biology, Genetics
Evolution, Speciation, Charles Darwin, Mutation, Evolutionary psychology