This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000049681 Reproduction Date:
In computer science and information science, an ontology is a formal naming and definition of the types, properties, and interrelationships of the entities that really or fundamentally exist for a particular domain of discourse.
An ontology compartmentalizes the variables needed for some set of computations and establishes the relationships between them.[1][2]
The fields of problem solving.
The term ontology has its origin in philosophy and has been applied in many different ways. The word element onto- comes from the Greek ὤν, ὄντος, ("being", "that which is"), present participle of the verb εἰμί ("be"). The core meaning within computer science is a model for describing the world that consists of a set of types, properties, and relationship types. There is also generally an expectation that the features of the model in an ontology should closely resemble the real world (related to the object).[3]
What many ontologies have in common in both computer science and in philosophy is the representation of entities, ideas, and events, along with their properties and relations, according to a system of categories. In both fields, there is considerable work on problems of ontological relativity (e.g., Quine and Kripke in philosophy, Sowa and Guarino in computer science),[4] and debates concerning whether a normative ontology is viable (e.g., debates over foundationalism in philosophy, and over the Cyc project in AI). Differences between the two are largely matters of focus. Computer scientists are more concerned with establishing fixed, controlled vocabularies, while philosophers are more concerned in first principles, such as whether there are such things as fixed essences or whether entities must be ontologically more primary than processes.
Other fields make ontological assumptions that are sometimes explicitly elaborated and explored. For instance, the definition and ontology of economics (also sometimes called the political economy) is hotly debated especially in Marxist economics[5] where it is a primary concern, but also in other subfields.[6] Such concerns intersect with those of information science when a simulation or model is intended to enable decisions in the economic realm; for example, to determine what capital assets are at risk and if so by how much (see risk management). Some claim all social sciences have explicit ontology issues because they do not have hard falsifiability criteria like most models in physical sciences and that indeed the lack of such widely accepted hard falsification criteria is what defines a social or soft science.
Historically, ontologies arise out of the branch of philosophy known as metaphysics, which deals with the nature of reality – of what exists. This fundamental branch is concerned with analyzing various types or modes of existence, often with special attention to the relations between particulars and universals, between intrinsic and extrinsic properties, and between essence and existence. The traditional goal of ontological inquiry in particular is to divide the world "at its joints" to discover those fundamental categories or kinds into which the world’s objects naturally fall.[7]
During the second half of the 20th century, philosophers extensively debated the possible methods or approaches to building ontologies without actually building any very elaborate ontologies themselves. By contrast, computer scientists were building some large and robust ontologies, such as WordNet and Cyc, with comparatively little debate over how they were built.
Since the mid-1970s, researchers in the field of artificial intelligence (AI) have recognized that capturing knowledge is the key to building large and powerful AI systems. AI researchers argued that they could create new ontologies as computational models that enable certain kinds of automated reasoning. In the 1980s, the AI community began to use the term ontology to refer to both a theory of a modeled world and a component of knowledge systems. Some researchers, drawing inspiration from philosophical ontologies, viewed computational ontology as a kind of applied philosophy.[8]
An ontology is a description (like a formal specification of a program) of the concepts and relationships that can formally exist for an agent or a community of agents. This definition is consistent with the usage of ontology as set of concept definitions, but more general. And it is a different sense of the word than its use in philosophy.[10]
Ontologies are often equated with taxonomic hierarchies of classes, class definitions, and the subsumption relation, but ontologies need not be limited to these forms. Ontologies are also not limited to conservative definitions — that is, definitions in the traditional logic sense that only introduce terminology and do not add any knowledge about the world.[11] To specify a conceptualization, one needs to state axioms that do constrain the possible interpretations for the defined terms.[1]
Contemporary ontologies share many structural similarities, regardless of the language in which they are expressed. As mentioned above, most ontologies describe individuals (instances), classes (concepts), attributes, and relations. In this section each of these components is discussed in turn.
Common components of ontologies include:
Ontologies are commonly encoded using ontology languages.
A domain ontology (or domain-specific ontology) represents concepts which belong to part of the world. Particular meanings of terms applied to that domain are provided by domain ontology. For example the word card has many different meanings. An ontology about the domain of poker would model the "playing card" meaning of the word, while an ontology about the domain of computer hardware would model the "punched card" and "video card" meanings.
Since domain ontologies represent concepts in very specific and often eclectic ways, they are often incompatible. As systems that rely on domain ontologies expand, they often need to merge domain ontologies into a more general representation. This presents a challenge to the ontology designer. Different ontologies in the same domain arise due to different languages, different intended usage of the ontologies, and different perceptions of the domain (based on cultural background, education, ideology, etc.).
At present, merging ontologies that are not developed from a common foundation ontology is a largely manual process and therefore time-consuming and expensive. Domain ontologies that use the same foundation ontology to provide a set of basic elements with which to specify the meanings of the domain ontology elements can be merged automatically. There are studies on generalized techniques for merging ontologies,[12] but this area of research is still largely theoretical.
An upper ontology (or foundation ontology) is a model of the common objects that are generally applicable across a wide range of domain ontologies. It usually employs a core glossary that contains the terms and associated object descriptions as they are used in various relevant domain sets.
There are several standardized upper ontologies available for use, including BFO, Dublin Core, GFO, OpenCyc/ResearchCyc, SUMO, the Unified Foundational Ontology (UFO),[13] and DOLCE.[14][15] WordNet, while considered an upper ontology by some, is not strictly an ontology. However, it has been employed as a linguistic tool for learning domain ontologies.[16]
The Gellish ontology is an example of a combination of an upper and a domain ontology.
A survey of ontology visualization techniques is presented by Katifori et al.[17] An evaluation of two most established ontology visualization techniques: indented tree and graph is discussed in.[18]
Ontology engineering (or ontology building) is a subfield of knowledge engineering. It studies the ontology development process, the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them.[19][20]
Ontology engineering aims to make explicit the knowledge contained within software applications, and within enterprises and business procedures for a particular domain. Ontology engineering offers a direction towards solving the interoperability problems brought about by semantic obstacles, such as the obstacles related to the definitions of business terms and software classes. Ontology engineering is a set of tasks related to the development of ontologies for a particular domain.[21]
Ontology learning is the automatic or semi-automatic creation of ontologies, including extracting a domain's terms from natural language text. As building ontologies manually is extremely labor-intensive and time consuming, there is great motivation to automate the process. Information extraction and text mining methods have been explored to automatically link ontologies to documents, e.g. in the context of the BioCreative challenges.[22]
An ontology language is a formal language used to encode the ontology. There are a number of such languages for ontologies, both proprietary and standards-based:
The W3C Linking Open Data Community Project coordinates attempts to converge different ontologies into worldwide Data Web.
The development of ontologies for the Web has led to the emergence of services providing lists or directories of ontologies with search facility. Such directories have been called ontology libraries.
The following are libraries of human-selected ontologies.
The following are both directories and search engines. They include crawlers searching the Web for well-formed ontologies.
Werner Ceusters has noted the confusion caused by the significant differences in the meaning of word ontology when used by philosophy compared with the use of the word ontology in computer science, and advocates for greater precision in use of the word ontology so that members of the various disciplines using various definitions of the word ontology can communicate. He writes 'before one is able to answer the question 'what is an ontology?', one must provide first an answer to the question 'what does the word ontology mean?'.[59]
Cryptography, Artificial intelligence, Software engineering, Science, Machine learning
Open source, CycL, Linux, Semantic Web, Authority control
Information, Computer science, Law, Information retrieval, Information technology
Logic, Epistemology, Ethics, Metaphysics, Aesthetics
Computer science, Engineering, Software, Software testing, Systems engineering
Web Ontology Language, World Wide Web, Metadata, Resource Description Framework, Ontology (information science)
Computer science, Artificial intelligence, Software engineering, Robotics, Semantic Web
Data mining, Metadata, Ontology (information science), Data, Database
United Kingdom, Ontology (information science), Anatomy, Molecular biology, Encode
Lawrence Berkeley National Laboratory, Ontology (information science), Open source, Berkeley, California, Bioinformatics