World Library  
Flag as Inappropriate
Email this Article

P-wave modulus

Article Id: WHEBN0010434600
Reproduction Date:

Title: P-wave modulus  
Author: World Heritage Encyclopedia
Language: English
Subject: Index of physics articles (P), Lamé parameters, Transfer-matrix method (optics), Elasticity (physics), Materials science
Collection: Elasticity (Physics), Materials Science
Publisher: World Heritage Encyclopedia
Publication
Date:
 

P-wave modulus

In linear elasticity, the P-wave modulus M, also known as the longitudinal modulus or the constrained modulus, is one of the elastic moduli available to describe isotropic homogeneous materials.

It is defined as the ratio of axial stress to axial strain in a uniaxial strain state

\sigma_{zz} = M \epsilon_{zz}

where all the other strains \epsilon_{**} are zero.

This is equivalent to stating that

M = \rho V_\mathrm{P}^2

where VP is the velocity of a P-wave.

References

  • G. Mavko, T. Mukerji, J. Dvorkin. The Rock Physics Handbook. Cambridge University Press 2003 (paperback). ISBN 0-521-54344-4
Conversion formulas
Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas.
K=\, E=\, \lambda=\, G=\, \nu=\, M=\, Notes
(K,\,E) K E \tfrac{3K(3K-E)}{9K-E} \tfrac{3KE}{9K-E} \tfrac{3K-E}{6K} \tfrac{3K(3K+E)}{9K-E}
(K,\,\lambda) K \tfrac{9K(K-\lambda)}{3K-\lambda} \lambda \tfrac{3(K-\lambda)}{2} \tfrac{\lambda}{3K-\lambda} 3K-2\lambda\,
(K,\,G) K \tfrac{9KG}{3K+G} K-\tfrac{2G}{3} G \tfrac{3K-2G}{2(3K+G)} K+\tfrac{4G}{3}
(K,\,\nu) K 3K(1-2\nu)\, \tfrac{3K\nu}{1+\nu} \tfrac{3K(1-2\nu)}{2(1+\nu)} \nu \tfrac{3K(1-\nu)}{1+\nu}
(K,\,M) K \tfrac{9K(M-K)}{3K+M} \tfrac{3K-M}{2} \tfrac{3(M-K)}{4} \tfrac{3K-M}{3K+M} M
(E,\,\lambda) \tfrac{E + 3\lambda + R}{6} E \lambda \tfrac{E-3\lambda+R}{4} \tfrac{2\lambda}{E+\lambda+R} \tfrac{E-\lambda+R}{2} R=\sqrt{E^2+9\lambda^2 + 2E\lambda}
(E,\,G) \tfrac{EG}{3(3G-E)} E \tfrac{G(E-2G)}{3G-E} G \tfrac{E}{2G}-1 \tfrac{G(4G-E)}{3G-E}
(E,\,\nu) \tfrac{E}{3(1-2\nu)} E \tfrac{E\nu}{(1+\nu)(1-2\nu)} \tfrac{E}{2(1+\nu)} \nu \tfrac{E(1-\nu)}{(1+\nu)(1-2\nu)}
(E,\,M) \tfrac{3M-E+S}{6} E \tfrac{M-E+S}{4} \tfrac{3M+E-S}{8} \tfrac{E-M+S}{4M} M

S=\pm\sqrt{E^2+9M^2-10EM}
There are two valid solutions.
The plus sign leads to \nu\geq 0.
The minus sign leads to \nu\leq 0.

(\lambda,\,G) \lambda+ \tfrac{2G}{3} \tfrac{G(3\lambda + 2G)}{\lambda + G} \lambda G \tfrac{\lambda}{2(\lambda + G)} \lambda+2G\,
(\lambda,\,\nu) \tfrac{\lambda(1+\nu)}{3\nu} \tfrac{\lambda(1+\nu)(1-2\nu)}{\nu} \lambda \tfrac{\lambda(1-2\nu)}{2\nu} \nu \tfrac{\lambda(1-\nu)}{\nu} Cannot be used when \nu=0 \Leftrightarrow \lambda=0
(\lambda,\,M) \tfrac{M + 2\lambda}{3} \tfrac{(M-\lambda)(M+2\lambda)}{M+\lambda} \lambda \tfrac{M-\lambda}{2} \tfrac{\lambda}{M+\lambda} M
(G,\,\nu) \tfrac{2G(1+\nu)}{3(1-2\nu)} 2G(1+\nu)\, \tfrac{2 G \nu}{1-2\nu} G \nu \tfrac{2G(1-\nu)}{1-2\nu}
(G,\,M) M - \tfrac{4G}{3} \tfrac{G(3M-4G)}{M-G} M - 2G\, G \tfrac{M - 2G}{2M - 2G} M
(\nu,\,M) \tfrac{M(1+\nu)}{3(1-\nu)} \tfrac{M(1+\nu)(1-2\nu)}{1-\nu} \tfrac{M \nu}{1-\nu} \tfrac{M(1-2\nu)}{2(1-\nu)} \nu M
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.