World Library  
Flag as Inappropriate
Email this Article

Paradox Valley

Article Id: WHEBN0025603516
Reproduction Date:

Title: Paradox Valley  
Author: World Heritage Encyclopedia
Language: English
Subject: Colorado River, Dolores River, Paradox (disambiguation), Bedrock, Colorado, Paradox, Colorado
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Paradox Valley

Paradox Valley
Paradox Valley as seen from near the southwest rim. The Dolores River is at the left edge.
Paradox Valley
The location of Paradox Valley within Colorado
Location Montrose County, Colorado, United States
Floor elevation 4,944 ft (1,507 m)
Long-axis direction NW-SE
Long-axis length 25 miles (40 km)
Width 3 to 5 miles (4.8 to 8.0 km)
Geography
Coordinates

38°19′N 108°51′W / 38.317°N 108.850°W / 38.317; -108.850Coordinates: 38°19′N 108°51′W / 38.317°N 108.850°W / 38.317; -108.850

Paradox Valley is a basin located in Montrose County in the U.S. state of Colorado. The dry, sparsely populated valley is named after the apparently paradoxical course of the Dolores River—instead of flowing down the length of the valley, the river cuts across the middle.[1] The valley is the site of a Bureau of Reclamation salinity-control project which has caused thousands of earthquakes,[2] and is the proposed location of a new uranium mill which would be the first built in the United States in over 25 years.[3]

Geography and climate

Paradox Valley trends northwest-southeast and measures about 3 to 5 miles (5 to 8 km) wide and 25 miles (40 km) long.[4] It lies along the extreme western edge of Colorado, about 50 miles (80 km) south of the city of Grand Junction. The La Sal Range of Utah rises in the northwest. Colorado State Highway 90 follows Paradox Valley on its way from Naturita to the Utah state line, crossing the historic Dolores River Bridge near the small unincorporated town of Bedrock. The town of Paradox lies a few miles north of the highway. Elevations on the valley floor range from about 5,000 feet (1,500 m) at the Dolores River to nearly 6,000 feet (1,800 m) at the southeast end. Steep parallel sandstone and shale[4] walls bound the valley to the northeast and southwest.

The valley was named in 1875 by geologist and surveyor Albert Charles Peale,[1] after he noted that the Dolores River had a "desire to perform strange and unexpected things" in the area.[5] Instead of flowing down the valley, the river emerges from a narrow gap in one wall, cuts perpendicularly across the middle, and exits through another gap. As a consequence of this unusual geography, the valley cannot be easily irrigated by the Dolores River, but springs and streams fed by snowmelt from the La Sal Range support farming in the northwestern third[6]

Near the center of the valley, the town of Bedrock experiences average highs ranging from 45 °F (7 °C) in December to 96 °F (36 °C) in July. Average lows range from 13 °F (−11 °C) in December to 54 °F (12 °C) in July. An average of 11 inches (28 cm) of precipitation, including 9 inches (23 cm) of snow, fall annually at Bedrock.[7]

Geology

The apparent paradox of Paradox Valley can be explained by salt tectonics. The valley is a collapsed anticline, a type of geological fold. About 300 million years ago, during the middle Pennsylvanian period, high pressures on lands to the northeast caused underlying salt deposits to flow towards where the valley is today. The salt encountered a buried fault-block ridge and was deflected upwards, penetrating the overlying rock strata and forming a salt dome. The salt may not have actually been exposed on the surface, but groundwater entering the top of the dome dissolved the underlying salt beds, allowing the center to collapse, forming what is today Paradox Valley. This process took place over about 150 million years, a long enough time for the Dolores River to downcut into the land and maintain its ancient course. The same process also created the Moab Valley (Spanish Valley) to the west, itself cut crosswise in a similar fashion by the Colorado River.[8]

The Paradox Formation, a geological formation containing salt, gypsum, anhydrite, shale, sandstone, and limestone,[9] is named after exposures found in Paradox Valley. The Paradox Basin, a geologic province throughout which the Paradox Formation is found, also bears the name of the valley.[8]

History

Paradox Valley was within the historical domain of the Ute tribe.[10] An 1868 treaty created a reservation for the Utes over much of western Colorado, including Paradox Valley.[10] Squatters began grazing cattle in the valley as early as 1877, in violation of the treaty.[11] By 1881, the Utes had been forced out of the area, and in 1882 the United States Congress officially opened the land to settlement.[11] Springs and streams allowed farming in the northwest end of the valley, and the mid-1890s discovery of copper at the future site of the Cashin Mine near the town of Bedrock brought in a further influx of settlers.[12] The valley and the surrounding plateau would soon become an important source of radioactive materials, including radium and uranium. In 1913, the New York Times identified carnotite mines near Paradox Valley as the source of "the greatest radium ore deposits in the world".[13] Production of radium ceased in 1922 when richer deposits were found in the Belgian Congo, but production of uranium and vanadium continued throughout most of the century.[6]

Paradox Valley Unit

Near-surface salt beds up to 14,000 feet (4,300 m) thick still underlie Paradox Valley. The Dolores River, a tributary of the Colorado River, naturally picks up about 100,000[4]-200,000[14] tons of salt annually on its way through the valley.[4] In the 1980s, the United States Bureau of Reclamation began construction of a pumping facility known as the Paradox Valley Unit.[14] The PVU, a part of the wider Colorado River Basin Salinity Control Project, became fully operational in 1996 and collects saline groundwater from 12 shallow wells along the Dolores River. The system then dilutes the brine with water and a corrosion inhibitor and transports it to a high-pressure injection well, where it is deposited 14,000 to 16,000 feet (4,300 to 4,900 m) deep into Precambrian and Paleozoic rocks. A 2001 study found that the total salt reaching the Dolores had declined by about 90%, although this may have been the result of a period of low precipitation during the measurement period.[4] As of 2009, the PVU removes about 113,000 tons of salt annually from Paradox Valley.[14]

The injection well of the Paradox Valley Unit has induced thousands of earthquakes, including at least 4,000 prior to the year 2001.[15] Most were below the threshold of human detection, but at least 15 have been over 2.5 in magnitude, the largest being a 4.3 magnitude quake on May 27, 2000. The PVU suspended operations for 28 days following this quake, but later resumed injections at a lower rate.[2] Further earthquakes have been linked with the operation, including a 3.9 magnitude quake in 2004.[16]

Piñon Ridge Mill

Energy Fuels Resources Corporation, a subsidiary of Toronto-based Energy Fuels Incorporated, has proposed the construction of a uranium mill in the southeast end of Paradox Valley.[3] Called the Piñon Ridge Mill, it would be capable of processing 500 tons of uranium ore per day.[3] If approved, it will be the first uranium mill built in the United States in over 25 years.[17]

See also

References

External links

  • United States Geological Survey
  • Photo of Paradox Valley near Bedrock, CO on Panoramio
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.