World Library  
Flag as Inappropriate
Email this Article

Particle detector

Article Id: WHEBN0000478538
Reproduction Date:

Title: Particle detector  
Author: World Heritage Encyclopedia
Language: English
Subject: Fazia, Mariner 4, Physics, Electron, ANAIS
Collection: Particle Detectors
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Particle detector

Summary of Particle Detectors

In experimental and applied particle physics, nuclear physics, and nuclear engineering, a particle detector, also known as a radiation detector, is a device used to detect, track, and/or identify high-energy particles, such as those produced by nuclear decay, cosmic radiation, or reactions in a particle accelerator. Modern detectors are also used as calorimeters to measure the energy of the detected radiation. They may also be used to measure other attributes such as momentum, spin, charge etc. of the particles.

Contents

Description

Detectors designed for modern accelerators are huge, both in size and in cost. The term counter is often used instead of detector, when the detector counts the particles but does not resolve its energy or ionization. Particle detectors can also usually track ionizing radiation (high energy photons or even visible light). If their main purpose is radiation measurement, they are called radiation detectors, but as photons are also (massless) particles, the term particle detector is still correct.

Examples and types

Many of the detectors invented and used so far are ionization detectors (of which gaseous ionization detectors and semiconductor detectors are most typical) and scintillation detectors; but other, completely different principles have also been applied, like Čerenkov light and transition radiation.

Cloud chamber with visible tracks from ionizing radiation (short, thick: α-particles; long, thin: β-particles)
Recording of a bubble chamber at CERN

Historical examples

Detectors for radiation protection

The following types of particle detector are widely used for radiation protection, and are commercially produced in large quantities for general use within the nuclear, medical and environmental fields.

Commonly used detectors for particle and nuclear physics

Modern detectors

Modern detectors in particle physics combine several of the above elements in layers much like an onion.

Research sites with particle detectors

At colliders

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.