World Library  
Flag as Inappropriate
Email this Article

Phagemid

Article Id: WHEBN0000779061
Reproduction Date:

Title: Phagemid  
Author: World Heritage Encyclopedia
Language: English
Subject: PBluescript, PComb3H, Phasmid, Site-directed mutagenesis, Cloning
Collection: Cloning, Molecular Biology
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Phagemid

A phagemid or phasmid is a plasmid that contains an f1 origin of replication from a f1 phage.[1] It can be used as a type of cloning vector in combination with filamentous phage M13. A phagemid can be replicated as a plasmid, and also be packaged as single stranded DNA in viral particles. Phagemids contain an origin of replication (ori) for double stranded replication, as well as an f1 ori to enable single stranded replication and packaging into phage particles.[1] Many commonly used plasmids contain an f1 ori and are thus phagemids. Similarly to a plasmid, a phagemid can be used to clone DNA fragments and be introduced into a bacterial host by a range of techniques, such as transformation and electroporation. However, infection of a bacterial host containing a phagemid with a 'helper' phage, for example VCSM13 or M13K07, provides the necessary viral components to enable single stranded DNA replication and packaging of the phagemid DNA into phage particles. These are secreted through the cell wall and released into the cell cytoplasm. Filamentous phages retard bacterial growth but, contrasting with the lambda phage and the T7 phage, are not generally lytic. Helper phages are usually engineered to package less efficiently (via a defective phage origin of replication)[2] than the phagemid so that the resultant phage particles contain predominantly phagemid DNA. F1 Filamentous phage infection requires the presence of a pilus so only bacterial hosts containing the F-plasmid or its derivatives can be used to generate phage particles. Prior to the development of cycle sequencing, phagemids were used to generate single stranded DNA template for sequencing purposes. Today phagemids are still useful for generating templates for site-directed mutagenesis. Detailed characterisation of the filamentous phage life cycle and structural features lead to the development of phage display technology, in which a range of peptides and proteins can be expressed as fusions to phage coat proteins and displayed on the viral surface. The displayed peptides and polypeptides are associated with the corresponding coding DNA within the phage particle and so this technique lends itself to the study of protein-protein interactions and other ligand/receptor combinations.

References

  1. ^ a b Analysis of Genes and Genomes, John Wiley & Sons, 2004, S. 140, Google Books
  2. ^ Lund, Paul E.; Hunt, Ryan C.; Gottesman, Michael M.; Kimchi-Sarfaty, Chava (2010). "Pseudovirions as Vehicles for the Delivery of siRNA". Pharmaceutical Research 27 (3): 400–420.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.