This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000023962 Reproduction Date:
In species, populations), which are discovered through molecular sequencing data and morphological data matrices. The term phylogenetics derives from the Greek terms phylé (φυλή) and phylon (φῦλον), denoting "tribe", "clan", "race"[1] and the adjectival form, genetikós (γενετικός), of the word genesis (γένεσις) "origin", "source", "birth".
In fact, phylogenesis is the process, phylogeny is science on this process, and phylogenetics is phylogeny based on analysis of sequences of biological macromolecules (DNA, RNA and proteins, in the first).[2] The result of phylogenetic studies is a hypothesis about the evolutionary history of taxonomic groups: their phylogeny.[3]
Evolution is a process whereby populations are altered over time and may split into separate branches, historical linguistics, similar concepts are used with respect to relationships between languages; and in textual criticism with stemmatics.
Phylogenetic analyses have become essential to research on the evolutionary computational phylogenetics and phyloinformatics tasks, including data acquisition, analysis, and algorithm development and dissemination.
cladistics (phylogenetic systematics) tries to reproduce phylogeny in its classification without loss of information; evolutionary taxonomy tries to find a compromise between them in order to represent stages of evolution.
The scientific methods of phylogenetics are often grouped under the term cladistics. The most common ones are parsimony, maximum likelihood (ML), and MCMC-based Bayesian inference. All methods depend upon an implicit or explicit mathematical model describing the evolution of characters observed in the species included; all can be, and are, used for molecular data, wherein the characters are aligned nucleotide or amino acid sequences, and all but maximum likelihood (see below) can be, and are, used for phenotypic (morphological, chemical, and physiological) data (also called classical or traditional data).
Phenetics, popular in the mid-20th century but now largely obsolete, uses distance matrix-based methods to construct trees based on overall similarity in morphology or other observable traits (i.e. in the phenotype, not the DNA), which was often assumed to approximate phylogenetic relationships.
A comprehensive step-by-step protocol on constructing phylogenetic tree, including DNA/Amino Acid contiguous sequence assembly, multiple sequence alignment, model-test (testing best-fitting substitution models) and phylogeny reconstruction using Maximum Likelihood and Bayesian Inference, is available at Nature Protocol[5]
Prior to 1990, phylogenetic inferences were generally presented as narrative scenarios. Such methods are legitimate, but often ambiguous and hard to test.[6][7][8]
Ultimately, there is no way to measure whether a particular phylogenetic hypothesis is accurate or not, unless the true relationships among the taxa being examined are already known (which may happen with bacteria or viruses under laboratory conditions). The best result an empirical phylogeneticist can hope to attain is a tree with branches that are well supported by the available evidence. Several potential pitfalls have been identified:
Certain characters are more likely to evolve convergently than others; logically, such characters should be given less weight in the reconstruction of a tree.[9] Weights in the form of a model of evolution can be inferred from sets of molecular data, so that maximum likelihood or Bayesian methods can be used to analyze them. For molecular sequences, this problem is exacerbated when the taxa under study have diverged substantially. As time since the divergence of two taxa increase, so does the probability of multiple substitutions on the same site, or back mutations, all of which result in homoplasies. For morphological data, unfortunately, the only objective way to determine convergence is by the construction of a tree – a somewhat circular method. Even so, weighting homoplasious characters does indeed lead to better-supported trees.[9] Further refinement can be brought by weighting changes in one direction higher than changes in another; for instance, the presence of thoracic wings almost guarantees placement among the pterygote insects because, although wings are often lost secondarily, there is no evidence that they have been gained more than once.[10]
In general, organisms can inherit genes in two ways: vertical gene transfer and prokaryotes; a good example of this is the acquired antibiotic resistance as a result of gene exchange between various bacteria leading to multi-drug-resistant bacterial species. There have also been well-documented cases of horizontal gene transfer between eukaryotes.
Horizontal gene transfer has complicated the determination of phylogenies of organisms, and inconsistencies in phylogeny have been reported among specific groups of organisms depending on the genes used to construct evolutionary trees. The only way to determine which genes have been acquired vertically and which horizontally is to parsimoniously assume that the largest set of genes that have been inherited together have been inherited vertically; this requires analyzing a large number of genes.
Owing to the development of advanced sequencing techniques in molecular biology, it has become feasible to gather large amounts of data (DNA or amino acid sequences) to infer phylogenetic hypotheses. For example, it is not rare to find studies with character matrices based on whole mitochondrial genomes (~16,000 nucleotides, in many animals). However, simulations have shown that it is more important to increase the number of taxa in the matrix than to increase the number of characters, because the more taxa there are, the more accurate and more robust is the resulting phylogenetic tree.[11][12] This may be partly due to the breaking up of long branches.
Another important factor that affects the accuracy of tree reconstruction is whether the data analyzed actually contain a useful phylogenetic signal, a term that is used generally to denote whether a character evolves slowly enough to have the same state in closely related taxa as opposed to varying randomly. Tests for phylogenetic signal exist.[13]
group means for a character are first ordered by size. The pooled within-group standard deviation is calculated … and differences between adjacent means … are compared relative to this standard deviation. Any pair of adjacent means is considered different and given different integer scores … if the means are separated by a "gap" greater than the within-group standard deviation … times some arbitrary constant.
In general, the more data that are available when constructing a tree, the more accurate and reliable the resulting tree will be. Missing data are no more detrimental than simply having fewer data, although the impact is greatest when most of the missing data are in a small number of taxa. Concentrating the missing data across a small number of characters produces a more robust tree.[15]
Because many characters involve embryological, or soft-tissue or molecular characters that (at best) hardly ever fossilize, and the interpretation of fossils is more ambiguous than that of living taxa, extinct taxa almost invariably have higher proportions of missing data than living ones. However, despite these limitations, the inclusion of fossils is invaluable, as they can provide information in sparse areas of trees, breaking up long branches and constraining intermediate character states; thus, fossil taxa contribute as much to tree resolution as modern taxa.[16] Fossils can also constrain the age of lineages and thus demonstrate how consistent a tree is with the stratigraphic record;[17] stratocladistics incorporates age information into data matrices for phylogenetic analyses.
The term "phylogeny" derives from the German Phylogenie, introduced by Haeckel in 1866.[18]
During the late 19th century, [19][20] Instead, ontogeny evolves – the phylogenetic history of a species cannot be read directly from its ontogeny, as Haeckel thought would be possible, but characters from ontogeny can be (and have been) used as data for phylogenetic analyses; the more closely related two species are, the more apomorphies their embryos share.
Speciation, Evolution, Biology, Paleontology, Ecology
Pininfarina Nido, Pininfarina, Jesper deClaville Christiansen
Evolution, Mutation, Evolutionary biology, Extinction, Human evolution
Evolution, Speciation, Mutation, Natural selection, Population
Evolution, Biology, Evolutionary biology, Speciation, Population genetics
Phylogenetics, Evolutionary biology, Evolution, Species, Cladogram
Evolution, Forestry, Plant physiology, Biology, Ecology
Phylogenetics, Evolutionary biology, Clade, Computational phylogenetics, Evolution
Computer science, Statistics, Phylogenetics, Evolutionary biology, Biology