The Poincaré group, named after Henri Poincaré,^{[1]} is the group of Minkowski spacetime isometries.^{[2]}^{[3]} It is a tengenerator nonabelian Lie group of fundamental importance in physics.
Contents

Overview 1

Details 2

Poincaré symmetry 3

See also 4

Notes 5

References 6
Overview
A Minkowski spacetime isometry has the property that the interval between events is left invariant. For example, if everything was postponed by two hours including two events and the path you took to go from one to the other, then the time interval between the events recorded by a stopwatch you carried with you would be the same. Or if everything was shifted five miles to the west, or turned 60 degrees to the right, you would also see no change in the interval. It turns out that the proper length of an object is also unaffected by such a shift. A time or space reversal (a reflection) is also an isometry of this group.
In Minkowski space (i.e. ignoring the effects of gravity), there are ten degrees of freedom of the isometries, which may be thought of as translation through time or space (four degrees, one per dimension); reflection through a plane (three degrees, the freedom in orientation of this plane); or a "boost" in any of the three spatial directions (three degrees). Composition of transformations is the operator of the Poincaré group, with proper rotations being produced as the composition of an even number of reflections.
In classical physics, the Galilean group is a comparable tenparameter group that acts on absolute time and space. Instead of boosts, it features shear mappings to relate comoving frames of reference.
Details
The Poincaré group is the group of Minkowski spacetime isometries. It is a tendimensional noncompact Lie group. The abelian group of translations is a normal subgroup, while the Lorentz group is also a subgroup, the stabilizer of the origin. The Poincaré group itself is the minimal subgroup of the affine group which includes all translations and Lorentz transformations. More precisely, it is a semidirect product of the translations and the Lorentz group,

\mathbf{R}^{1,3} \rtimes \mathrm{SO}(1,3) \,.
Another way of putting this is that the Poincaré group is a group extension of the Lorentz group by a vector representation of it; it is sometimes dubbed, informally, as the "inhomogeneous Lorentz group". In turn, it can also be obtained as a group contraction of the de Sitter group SO(4,1) ~ Sp(2,2), as the de Sitter radius goes to infinity.
Its positive energy unitary irreducible representations are indexed by mass (nonnegative number) and spin (integer or half integer) and are associated with particles in quantum mechanics (see Wigner's classification).
In accordance with the Erlangen program, the geometry of Minkowski space is defined by the Poincaré group: Minkowski space is considered as a homogeneous space for the group.
The Poincaré algebra is the Lie algebra of the Poincaré group. It is a Lie algebra extension of the Lie algebra of the Lorentz group. More specifically, the proper (detΛ=1), orthochronous (Λ^{0}_{0}≥1) part of the Lorentz subgroup (its identity component), SO^{+}(1, 3), is connected to the identity and is thus provided by the exponentiation exp(ia_{μ}P^{μ}) exp(iω_{μν}M^{μν}/2) of this Lie algebra. In component form, the Poincaré algebra is given by the commutation relations:^{[4]}^{[5]}

~[P_\mu, P_\nu] = 0\,

~\frac{ 1 }{ i }~[M_{\mu\nu}, P_\rho] = \eta_{\mu\rho} P_\nu  \eta_{\nu\rho} P_\mu\,

~\frac{ 1 }{ i }~[M_{\mu\nu}, M_{\rho\sigma}] = \eta_{\mu\rho} M_{\nu\sigma}  \eta_{\mu\sigma} M_{\nu\rho}  \eta_{\nu\rho} M_{\mu\sigma} + \eta_{\nu\sigma} M_{\mu\rho}\, ,

where P is the generator of translations, M is the generator of Lorentz transformations, and η is the (+,−,−,−) Minkowski metric (see Sign convention).
The bottom commutation relation is the ("homogeneous") Lorentz group, consisting of rotations, J_{i} = −ϵ_{imn}M^{mn}/2, and boosts, K_{i} = M_{i0}. In this notation, the entire Poincaré algebra is expressible in noncovariant (but more practical) language as

[J_m,P_n] = i \epsilon_{mnk} P_k ~,

[J_i,P_0] = 0 ~,

[K_i,P_k] = i \eta_{ik} P_0 ~,

[K_i,P_0] = i P_i ~,

[J_m,J_n] = i \epsilon_{mnk} J_k ~,

[J_m,K_n] = i \epsilon_{mnk} K_k ~,

[K_m,K_n] = i \epsilon_{mnk} J_k ~,
where the bottom line commutator of two boosts is often referred to as a "Wigner rotation". Note the important simplification [J_{m}+i K_{m} , J_{n}−i K_{n}] = 0, which permits reduction of the Lorentz subalgebra to su(2)⊕su(2) and efficient treatment of its associated representations.
The Casimir invariants of this algebra are P_{μ}P^{μ} and W_{μ} W^{μ} where W_{μ} is the Pauli–Lubanski pseudovector; they serve as labels for the representations of the group.
The Poincaré group is the full symmetry group of any relativistic field theory. As a result, all elementary particles fall in representations of this group. These are usually specified by the fourmomentum squared of each particle (i.e. its mass squared) and the intrinsic quantum numbers J^{PC}, where J is the spin quantum number, P is the parity and C is the chargeconjugation quantum number. In practice, charge conjugation and parity are violated by many quantum field theories; where this occurs, P and C are forfeited. Since CPT symmetry is invariant in quantum field theory, a timereversal quantum number may be constructed from those given.
As a topological space, the group has four connected components: the component of the identity; the time reversed component; the spatial inversion component; and the component which is both timereversed and spatially inverted.
Poincaré symmetry
Poincaré symmetry is the full symmetry of special relativity. It includes:
The last two symmetries, J and K, together make the Lorentz group (see also Lorentz invariance); the semidirect product of the translations group and the Lorentz group then produce the Poincaré group. Objects which are invariant under this group are then said to possess Poincaré invariance or relativistic invariance.
See also
Notes

^ Poincaré, Henri, "Sur la dynamique de l’électron", Rendiconti del Circolo matematico di Palermo 21: 129–176, (Wikisource translation: On the Dynamics of the Electron).

^ Minkowski, Hermann, "Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern", Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, MathematischPhysikalische Klasse: 53–111 (Wikisource translation: The Fundamental Equations for Electromagnetic Processes in Moving Bodies).

^ Minkowski, Hermann, "Raum und Zeit", Physikalische Zeitschrift 10: 75–88

^ N.N. Bogolubov (1989). General Principles of Quantum Field Theory (2nd ed.). Springer. p. 272.

^ T. Ohlsson (2011). Relativistic Quantum Physics: From Advanced Quantum Mechanics to Introductory Quantum Field Theory. Cambridge University Press. p. 10.
References

WuKi Tung (1985). Group Theory in Physics. World Scientific Publishing.

Weinberg, Steven (1995). The Quantum Theory of Fields 1. Cambridge: Cambridge University press.

L.H. Ryder (1996). Quantum Field Theory (2nd ed.). Cambridge University Press. p. 62.
This article was sourced from Creative Commons AttributionShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, EGovernment Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a nonprofit organization.