 #jsDisabledContent { display:none; } My Account |  Register |  Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Premetric space

Article Id: WHEBN0008062150
Reproduction Date:

 Title: Premetric space Author: World Heritage Encyclopedia Language: English Subject: Metric space Collection: Publisher: World Heritage Encyclopedia Publication Date:

### Premetric space

In mathematics, a metric or distance function is a function that defines a distance between elements of a set. A set with a metric is called a metric space. A metric induces a topology on a set but not all topologies can be generated by a metric. A topological space whose topology can be described by a metric is called metrizable.

In differential geometry, the word "metric" may refer to a bilinear form that may be defined from the tangent vectors of a differentiable manifold onto a scalar, allowing distances along curves to be determined through integration. It is more properly termed a metric tensor.

## Definition

A metric on a set X is a function (called the distance function or simply distance)

d : X × XR

(where R is the set of real numbers). For all x, y, z in X, this function is required to satisfy the following conditions:

1. d(x, y) ≥ 0     (non-negativity, or separation axiom)
2. d(x, y) = 0   if and only if   x = y     (identity of indiscernibles, or coincidence axiom)
3. d(x, y) = d(y, x)     (symmetry)
4. d(x, z) ≤ d(x, y) + d(y, z)     (subadditivity / triangle inequality).

Conditions 1 and 2 together produce positive definiteness. The first condition is implied by the others.

A metric is called an ultrametric if it satisfies the following stronger version of the triangle inequality where points can never fall 'between' other points:

For all x, y, z in X, d(x, z) ≤ max(d(x, y), d(y, z))

A metric d on X is called intrinsic if any two points x and y in X can be joined by a curve with length arbitrarily close to d(x, y).

For sets on which an addition + : X × XX is defined, d is called a translation invariant metric if

d(x, y) = d(x + a, y + a)

for all x, y and a in X.