World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0014493178
Reproduction Date:

Title: Quasi-star  
Author: World Heritage Encyclopedia
Language: English
Subject: Magnetospheric eternally collapsing object, Black star (semiclassical gravity), Quasar, Black hole starship, Black holes
Publisher: World Heritage Encyclopedia


A quasi-star (also called black hole star) is a hypothetical type of extremely massive star that may have existed very early in the history of the Universe. Unlike modern stars, which are powered by nuclear fusion in their cores, a quasi-star's energy would come from material falling into a central black hole.[1]

A quasi-star is predicted to form when the core of a large protostar collapses into a black hole during its formation and the outer layers of the star are massive enough to absorb the resulting burst of energy without being blown away (as they are with modern supernovae). Such a star would have to be at least one thousand times the mass of the Sun.[1] Stars this large could only form early in the history of the Universe before the hydrogen and helium were contaminated by heavier elements; see Population III stars.

Once the black hole had formed at the core of the protostar, it would continue generating a large amount of radiant energy from the infall of additional stellar material. This energy would counteract the force of the gravity, creating an equilibrium similar to the one that supports modern fusion-based stars.[2] A quasi-star is predicted to have had a maximum lifespan of about one million years, after which the core black hole would have grown to about ten thousand solar masses. These intermediate mass black holes have been suggested as the origin of the modern era's supermassive black holes. Quasi-stars are predicted to have surface temperatures comparable to that of the Sun, but, with diameters of approximately ten billion kilometers or over seven thousand times the diameter of the Sun, each one would produce as much light as a small galaxy.[1]

See also


  1. ^ a b c Battersby, Stephen (29 November 2007). "'"Biggest black holes may grow inside 'quasistars. news service. 
  2. ^ Begelman, Mitch; Rossi, Elena; Armitage, Philip (2008). "Quasi-stars: accreting black holes inside massive envelopes". MNRAS 387 (4): 1649–1659.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.