World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0014178795
Reproduction Date:

Title: Sox2  
Author: World Heritage Encyclopedia
Language: English
Subject: Induced pluripotent stem cell, SOX1, Germ line development, Subgranular zone, Stem cell
Publisher: World Heritage Encyclopedia


SRY (sex determining region Y)-box 2

PDB rendering based on 1gt0.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols  ; ANOP3; MCOPS3
External IDs GeneCards:
RNA expression pattern
Species Human Mouse
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

SRY (sex determining region Y)-box 2, also known as SOX2, is a transcription factor that is essential for maintaining self-renewal, or pluripotency, of undifferentiated embryonic stem cells. Sox2 has a critical role in maintenance of embryonic and neural stem cells.[1]

Sox2 is a member of the Sox family of transcription factors, which have been shown to play key roles in many stages of mammalian development. This protein family shares highly conserved DNA binding domains known as HMG (High-mobility group) box domains containing approximately 80 amino acids.[1]

Sox2 holds great promise in research involving induced pluripotency, an emerging and very promising field of regenerative medicine.[2]

Function and expression in pluripotency

LIF (Leukemia inhibitory factor) signaling, which maintains pluripotency in mouse embryonic stem cells, activates Sox2 downstream of the JAK-STAT signaling pathway and subsequent activation of Klf4 (a member of the family of Kruppel-like factors). Oct-4, Sox2 and Nanog positively regulate transcription of all pluripotency circuitry proteins in the LIF pathway.[3]

NPM1, a transcriptional regulator involved in cell proliferation, individually forms complexes with Sox2, Oct4 and Nanog in embryonic stem cells.[4] These three pluripotency factors contribute to a complex molecular network that regulates a number of genes controlling pluripotency. Sox2 binds to DNA cooperatively with Oct4 at non-palindromic sequences to activate transcription of key pluripotency factors.[5] Surprisingly, regulation of Oct4-Sox2 enhancers can occur without Sox2, likely due to expression of other Sox proteins. However, a group of researchers concluded that the primary role of Sox2 in embryonic stem cells is controlling Oct4 expression, and they both perpetuate their own expression when expressed concurrently.[6]

In an experiment involving mouse embryonic stem cells, itwas discovered that Sox2 in conjunction with Oct4, c-Myc and Klf4 were sufficient for producing induced pluripotent stem cells.[7] The discovery that expression of only four transcription factors was necessary to induce pluripotency allowed future regenerative medicine research to be conducted considering minor manipulations.

Loss of pluripotency is regulated by hypermethylation of some Sox2 and Oct4 binding sites in male germ cells[8] and post-transcriptional suppression of Sox2 by miR134.[9]

Varying levels of Sox2 affect embryonic stem cells' fate of differentiation. Sox2 inhibits differentiation into the mesendoderm germ layer and promotes differentiation into neural ectoderm germ layer.[10] Npm1/Sox2 complexes are sustained when differentiation is induced along the ectodermal lineage, emphasizing an important functional role for Sox2 in ectodermal differentiation.[4]

A study conducted in Milano, Italy showed, through the development of a knockout model, that deficiency of Sox2 results in neural malformities and eventually fetal death, further underlining Sox2’s vital role in embryonic development.[11]

Role in neural stem cells

In neurogenesis, Sox2 is expressed throughout developing cells in the neural tube as well as in proliferating CNS progenitors. However, Sox2 is downregulated during progenitors' final cell cycle during differentiation when they become post mitotic. [12] Cells expressing Sox2 are capable of both producing cells identical to themselves and differentiated neural cell types, two necessary hallmarks of stem cells. Proliferation of Sox2+ neural stem cells can generate neural precursors as well as Sox2+ neural stem cell population.[13]

Induced pluripotency is possible using adult neural stem cells, which express higher levels of Sox2 and c-Myc than embryonic stem cells. Therefore only two exogenous factors, one of which is necessarily Oct4, are sufficient for inducing pluripotent cells from neural stem cells, lessening the complications and risks associated with introducing multiple factors to induce pluripotency.[14]


SOX2 has been shown to interact with PAX6,[15] NPM1, [3] and Oct4.[5] SOX2 has been found to cooperatively regulate Rex1 with Oct3/4.[16]

Eye deformities

Mutations in this gene have been linked with bilateral anophthalmia, a severe structural eye deformity.[17]


In lung development, Sox2 controls the branching morphogenesis of the bronchial tree and differentiation of the epithelium of airways. Overexpression causes an increase in neuroendocrine, gastric/intestinal and basal cells.[18] Under normal conditions, Sox2 is critical for maintaining self-renewal and appropriate proportion of basal cells in adult tracheal epithelium. However, its overexpression gives rise to extensive epithelial hyperplasia and eventually carcinoma in both developing and adult mouse lungs.[19]

In squamous cell carcinoma, gene amplifications frequently target the 3q26.3 region. The gene for Sox2 lies within this region, which effectively characterizes Sox2 as an oncogene. Sox2 is a key upregulated factor in lung squamous cell carcinoma, directing many genes involved in tumor progression. Sox2 overexpression cooperates with loss of Lkb1 expression to promote squamous cell lung cancer in mice. [20] Its overexpression also activates cellular migration and anchorage-independent growth.[21]

Sox2 expression is also found in high gleason grade prostate cancer, and promotes castration-resistant prostate cancer growth. [22]

The ectopic expression of SOX2 may be related to abnormal differentiation of colorectal cancer cells.[23]

Interactions with Thyroid Hormone

There are three thyroid hormone response elements (TREs) in the region upstream of the Sox2 promoter. This region is known as the enhancer region. Studies have suggested that thyroid hormone (T3) controls Sox2 expression via the enhancer region. The expression of TRα1 (thyroid hormone receptor) is increased in proliferating and migrating neural stem cells. It has therefore been suggested that transcriptional repression of Sox2, mediated by the thyroid hormone signaling axis, allows for neural stem cell commitment and migration from the sub-ventricular zone. A deficiency of thyroid hormone, particularly during the first trimester, will lead to abnormal central nervous system development.[24] Further supporting this conclusion is the fact that hypothyroidism during fetal development can result in a variety of neurological deficiencies, including cretinism, characterized by stunted physical development and mental retardation. [24]

Hypothyroidism can arise from a multitude of causes, and is commonly remedied with hormone treatments such as the commonly used Levothyroxine.[25]


  1. ^ a b "SOX2". NCBI. 
  2. ^ Rizzino A (2009). "Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells". Wiley Interdiscip Rev Syst Biol Med 1 (2): 228–36.  
  3. ^ a b Niwa H, Ogawa K, Shimosato D, Adachi K (July 2009). "A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells". Nature 460 (7251): 118–22.  
  4. ^ a b Johansson H, Simonsson S (November 2010). "Core transcription factors, Oct4, Sox2 and Nanog, individually form complexes with nucleophosmin (Npm1) to control embryonic stem (ES) cell fate determination". Aging (Albany NY) 2 (11): 815–22.  
  5. ^ a b Chambers I, Tomlinson SR (July 2009). "The transcriptional foundation of pluripotency". Development 136 (14): 2311–22.  
  6. ^ Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H (June 2007). "Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells". Nat. Cell Biol. 9 (6): 625–35.  
  7. ^ Takahashi K, Yamanaka S (August 2006). "Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors". Cell 126 (4): 663–76.  
  8. ^ Imamura M, Miura K, Iwabuchi K, Ichisaka T, Nakagawa M, Lee J, Kanatsu-Shinohara M, Shinohara T, Yamanaka S (2006). "Transcriptional repression and DNA hypermethylation of a small set of ES cell marker genes in male germline stem cells". BMC Dev. Biol. 6: 34.  
  9. ^ Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (October 2008). "MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation". Nature 455 (7216): 1124–8.  
  10. ^ Thomson M, Liu SJ, Zou LN, Smith Z, Meissner A, Ramanathan S (June 2011). "Pluripotency factors in embryonic stem cells regulate differentiation into germ layers". Cell 145 (6): 875–89.  
  11. ^ Feri A L et al. "Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain". Development 131: 3805 – 19.  
  12. ^ Graham, V.; Khudyakov, J.; Ellis, P.; Pevny, L. (2003). "SOX2 functions to maintain neural progenitor identity". Neuron 39 (5): 749–765.  
  13. ^ Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH (November 2007). "In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus". Cell Stem Cell 1 (5): 515–28.  
  14. ^ Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Araúzo-Bravo MJ, Ruau D, Han DW, Zenke M, Schöler HR (July 2008). "Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors". Nature 454 (7204): 646–50.  
  15. ^ Aota S, Nakajima N, Sakamoto R, Watanabe S, Ibaraki N, Okazaki K (May 2003). "Pax6 autoregulation mediated by direct interaction of Pax6 protein with the head surface ectoderm-specific enhancer of the mouse Pax6 gene". Dev. Biol. 257 (1): 1–13.  
  16. ^ Shi W, Wang H, Pan G, Geng Y, Guo Y, Pei D (August 2006). "Regulation of the pluripotency marker Rex-1 by Nanog and Sox2". J. Biol. Chem. 281 (33): 23319–25.  
  17. ^ "Entrez Gene: SOX2 SRY (sex determining region Y)-box 2". 
  18. ^ Gontan C, de Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R (May 2008). "Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation". Dev. Biol. 317 (1): 296–309.  
  19. ^ Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, Onaitis MW (2010). "Evidence that SOX2 overexpression is oncogenic in the lung". PLoS ONE 5 (6): e11022.  
  20. ^ Mukhopadhyay A, Berrett KC, Kc U, Clair PM, Pop SM, Carr SR, Witt BL, Oliver TG. Cell Rep. 2014 Jul 10;8(1):40-9. doi: 10.1016/j.celrep.2014.05.036. Epub 2014 Jun 19. PMID: 24953650 [PubMed - in process]
  21. ^ Hussenet T, Dali S, Exinger J, Monga B, Jost B, Dembelé D, Martinet N, Thibault C, Huelsken J, Brambilla E, du Manoir S (2010). "SOX2 is an oncogene activated by recurrent 3q26.3 amplifications in human lung squamous cell carcinomas". PLoS ONE 5 (1): e8960.  
  22. ^ Kregel, S., Kiriluk, K., Rosen, A., Cai, Y., Reyes, E.E., Otto, K., Paner, G.P., Szmulewitz, RZ., Vander Griend D.J (2013). "Sox2 Is an Androgen Receptor-Repressed Gene That Promotes Castration-Resistant Prostate Cancer". PLoS ONE 8 (1): e53701.  
  23. ^ Tani Y, Akiyama Y, Fukamachi H, Yanagihara K, Yuasa Y (April 2007). "Transcription factor SOX2 up-regulates stomach-specific pepsinogen A gene expression". J. Cancer Res. Clin. Oncol. 133 (4): 263–9.  
  24. ^ a b Lopéz-Juaréz A et al (Oct 2012). "Thyroid hormone signaling acts as a neurogenic switch by repressing sox2 in the adult neural stem cell niche". Cell Stem Cell 10 (5): 531–43.  
  25. ^ Wisse B. Hypothyroidism: MedlinePlus Medical Encyclopedia.. U.S National Library of Medicine. Retrieved April 10, 2014. 

Further reading

External links

  • Young Lab- Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells
  • GeneReviews/NCBI/NIH/UW entry on SOX2-related eye disorders
  • )Journal of Visualized ExperimentsGenerating iPS Cells from MEFS through Forced Expression of Sox-2, Oct-4, c-Myc, and Klf4 (
  • GeneReviews/NCBI/NIH/UW entry on Anophthalmia / Microphthalmia Overview
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.