World Library  
Flag as Inappropriate
Email this Article

Septimal minor third

Article Id: WHEBN0005489187
Reproduction Date:

Title: Septimal minor third  
Author: World Heritage Encyclopedia
Language: English
Subject: Quarter tone, Moodswinger, Septimal semicomma, Septimal comma, Septimal quarter tone
Collection: 7-Limit Tuning and Intervals, Minor Intervals, Superparticular Intervals, Thirds (Music)
Publisher: World Heritage Encyclopedia

Septimal minor third

Septimal minor third
Inverse Septimal major sixth
Other names Subminor third
Abbreviation s3, sm3
Semitones 2 23
Interval class ~2½
Just interval 7:6[1]
Equal temperament 300
Just intonation 267
Septimal minor third on C About this sound Play  .

In music, the septimal minor third About this sound play  , also called the subminor third (e.g., by Helmholtz[2][3]), is the musical interval exactly or approximately equal to a 7/6 ratio of frequencies.[4] In terms of cents, it is 267 cents, a quartertone of size 36/35 flatter than a just minor third of 6/5. In 24-tone equal temperament five quarter tones approximate the septimal minor third at 250 cents (About this sound Play  ).

The septimal minor third may be derived in the harmonic series from the seventh harmonic, and as such is in inharmonic ratios with all notes in the regular 12TET scale, with the exception of the fundamental and the octave.[5] It has a darker but generally pleasing character when compared to the 6/5 third. A triad formed by using it in place of the minor third is called a septimal minor or subminor triad About this sound play  .

In the meantone era the interval made its appearance as the alternative minor third in remote keys, under the name augmented second. Tunings of the meantone fifth in the neighborhood of quarter-comma meantone will give three septimal minor thirds among the twelve minor thirds of the tuning; since the wolf fifth appears with an ordinary minor third, this entails there are three septimal minor triads, eight ordinary minor triads and one triad containing the wolf fifth arising from an ordinary minor third followed by a septimal major third.

Composer Ben Johnston uses a small "7" as an accidental to indicate a note is lowered 49 cents, or an upside down seven ("ㄥ") to indicate a note is raised 49 cents.[6]

The position of this note also appears on the scale of the Moodswinger. Yuri Landman indicated the harmonic positions of his instrument in a color dotted series. The septimal minor third position is cyan blue as well as the other knotted positions of the seventh harmonic (5/7, 4/7, 3/7, 2/7 and 1/7 of the string length of the open string).[7]

In equal temperament and non-Western scales

Twelve-tone equal temperament (12-TET), as commonly used in Western music, does not provide a good approximation for this interval, and quarter tones (24-TET) do not match it well either. 19-TET, 22-TET, 31-TET, 41-TET, 53-TET, and 72-TET each offer successively better matches (measured in cents difference) to this interval.

Several non-Western and just intonation tunings, such as the 43-tone scale developed by Harry Partch, do feature the (exact) septimal minor third.


The file plays A440, followed by 513.333 Hz, followed by both tones together.

Problems playing this file? See .

Because of its position in the harmonic series, the sixth harmonic (frequency ratio 6:1) being a perfect fifth and two octaves above the root, the septimal minor third implies a difference tone a perfect fifth below the lower note in the interval. Depending on the timbre of the pitches, humans sometimes perceive this root pitch even if it is not played. The phenomenon of hearing this root pitch is evident in the following sound file, which uses a pure sine wave. For comparison, the root pitch is played after the interval has been played.

The file plays A880, followed by 1026.67 Hz, followed by both tones together, followed by the implied root frequency of 586.67 Hz, a fifth below the A.

Problems playing this file? See .


  1. ^ Haluška, Ján (2003). The Mathematical Theory of Tone Systems, p.xxiii. ISBN 0-8247-4714-3. Septimal minor third.
  2. ^ Hermann L. F Von Helmholtz (2007). On the Sensations of Tone, p.195. ISBN 1-60206-639-6.
  3. ^ Royal Society (Great Britain) (1880, digitized Feb 26, 2008). Proceedings of the Royal Society of London, Volume 30, p.531. Harvard University.
  4. ^ Partch, Harry (1979). Genesis of a Music, p.68. ISBN 0-306-80106-X.
  5. ^ Leta E. Miller, Fredric Lieberman (2006). Lou Harrison, p.72. ISBN 0-252-03120-2. "Among the most striking intervals are...the narrow 7:6 subminor third...The seventh harmonic...was problematic in all Western tuning systems. The interval it forms with the sixth harmonic [7:6 subminor third] is smaller than a minor third but larger than a major second. To cite a specific example: the seventh harmonic of C lies partway between A and B-flat. Sounding with the sixth harmonic (G), it forms a 7:6 subminor third of 267 cents--33 cents smaller than the equal-tempered minor third, itself 16 cents smaller than the pure 6:5 minor third. This 7:6 interval is thus nearly a quarter tone smaller than the pure minor third (33 + 16 = 49 cents)."
  6. ^ Douglas Keislar; Easley Blackwood; John Eaton; Lou Harrison; Ben Johnston; Joel Mandelbaum; William Schottstaedt. p.193. "Six American Composers on Nonstandard Tunnings", Perspectives of New Music, Vol. 29, No. 1. (Winter, 1991), pp. 176-211.
  7. ^ "Moodswinger", oddmusic homepage
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.