World Library  
Flag as Inappropriate
Email this Article

Septimal third-tone

Article Id: WHEBN0026405828
Reproduction Date:

Title: Septimal third-tone  
Author: World Heritage Encyclopedia
Language: English
Subject: Neutral interval, Unison, Perfect fifth, Perfect fourth
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Septimal third-tone

Septimal third-tone on C About this sound   .

A septimal 1/3-tone (in music) is an interval with the ratio of 28:27,[1] which is the difference between the perfect fourth and the supermajor third. It is about 62.96 cents wide. The septimal 1/3-tone can be viewed either as a musical interval in its own right, or as a comma; if it is tempered out in a given tuning system, the distinction between these two intervals is lost. The septimal 1/3-tone may be derived from the harmonic series as the interval between the twenty-seventh and twenty-eighth harmonics. It may be considered a diesis.[2]

The septimal 1/3-tone, along with the septimal diesis is tempered out by five-tone equal temperament, and equal temperaments which divide the octave into a small multiple of 5 steps, such as 15-TET and 25-TET. This family of scales is known as Blackwood temperament in honor of Easley Blackwood, Jr., who first analyzed 10-note subsets of 15-TET that take advantage of the temperament.

When added to the 15:14 semitone, the 21:20 semitone and 28:27 semitone produce the 9:8 tone (major tone) and 10:9 tone (minor tone), respectively.

It is the difference between 7/6 and 9/8 (tritē and paramesē).[3][4]

Septimal sixth-tone

The septimal sixth-tone, also called the jubilisma, is a 7-limit musical interval approximately the size of 1/6 of a whole tone (203.91/6=33.99 cents). An interval with the ratio of 50:49 (About this sound   ), about 34.98 cents, which in just intonation is the difference between the lesser septimal (7:5) tritone, and its inversion, the greater septimal tritone (10:7). This interval is tempered out by 12-TET and 22-TET, but not by 19-TET, 31-TET or any other odd division of the octave.

References

  1. ^ Haluska, Jan (2003). The Mathematical Theory of Tone Systems, p.xxiv. ISBN 0-8247-4714-3. 1/3-tone, Archytas inferior 1/4-tone.
  2. ^ Thomas Christensen, ed. (2002). The Cambridge History of Western Music Theory, p.186. ISBN 9780521623711.
  3. ^ Huffman, Carl (2005). Archytas of Tarentum: Pythagorean, Philosopher and Mathematician King, p.420. ISBN 9781139444071.
  4. ^ Andrew Barker, ed. (2004). Greek Musical Writings: Volume 2, Harmonic and Acoustic Theory, p.51. ISBN 9780521616973.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.