World Library  
Flag as Inappropriate
Email this Article

Sodium amide

Article Id: WHEBN0000901305
Reproduction Date:

Title: Sodium amide  
Author: World Heritage Encyclopedia
Language: English
Subject: Sodium nitride, Sodium cyanide, Sodium azide, Base (chemistry), Chlorphenamine
Collection: Metal Amides, Sodium Compounds
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Sodium amide

Sodium amide
Structural formula of sodium amide
Ball and stick, unit cell model of sodium amide
Names
IUPAC name
Sodium amide, sodium azanide[1]
Other names
Sodamide
Identifiers
 Y
ChemSpider  N
EC number 231-971-0
Jmol-3D images Image
PubChem
UN number 1390
Properties
NaNH2
Molar mass 39.01 g mol−1
Appearance Colourless crystals
Odor ammonia-like
Density 1.39 g cm−3
Melting point 210 °C (410 °F; 483 K)
Boiling point 400 °C (752 °F; 673 K)
reacts
Solubility 0.004 g/100 mL (liquid ammonia), reacts in ethanol
Acidity (pKa) 38 (conjugate acid) [2]
Structure
orthogonal
Thermochemistry
66.15 J/mol K
76.9 J/mol K
-118.8 kJ/mol
-59 kJ/mol
Hazards
NFPA 704
2
3
3
W
Flash point 4.44 °C (39.99 °F; 277.59 K)
450 °C (842 °F; 723 K)
Related compounds
Other anions
Sodium bis(trimethylsilyl)amide
Other cations
Potassium amide
Related compounds
Ammonia
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N  (: Y/N?)

Sodium amide, commonly called sodamide, is the organic synthesis.

Contents

  • Preparation and structure 1
  • Uses 2
    • Dehydrohalogenation 2.1
    • Cyclization reactions 2.2
    • Deprotonation of carbon and nitrogen acids 2.3
    • Related nonnucleophilic bases 2.4
    • Other reactions 2.5
  • Safety 3
  • See also 4
  • References 5

Preparation and structure

Sodium amide can be prepared by the reaction of sodium with ammonia gas,[3] but it is usually prepared by the reaction in liquid ammonia using iron(III) nitrate as a catalyst. The reaction is fastest at the boiling point of the ammonia, c. −33 °C. An electride, [Na(NH3)6]+e, is formed as an intermediate.[4]

2 Na + 2 NH3 → 2 NaNH2 + H2

NaNH2 is a salt-like material and as such, crystallizes as an infinite polymer.[5] The geometry about sodium is tetrahedral.[6] In ammonia, NaNH2 forms conductive solutions, consistent with the presence of Na(NH3)6+ and NH2 anions.

Uses

Sodium amide is mainly used as a strong ammonia (liquid or gaseous). One of the main advantages to the use of sodamide is that it is rarely functions as a nucleophile. In the industrial production of indigo, sodium amide is a component of the highly basic mixture that induces cyclisation of N-phenylglycine. The reaction produces ammonia, which is recycled typically.[7]

Pfleger's synthesis of indigo dye.

Dehydrohalogenation

Sodium amide induces the loss of two equivalents of hydrogen bromide from a vicinal dibromoalkane to give a carbon-carbon triple bond, as in a preparation of phenylacetylene.[8] Usually two equivalents of sodium amide yields the desired alkyne. Three equivalents are necessary in the preparation of a terminal alkynes because the terminal CH of the resulting alkyne protonates an equivalent amount of base.

Hydrogen chloride and ethanol can also be eliminated in this way,[9] as in the preparation of 1-ethoxy-1-butyne.[10]

Cyclization reactions

Where there is no β-hydrogen to be eliminated, cyclic compounds may be formed, as in the preparation of methylenecyclopropane below.[11]

Cyclopropenes,[12] aziridines[13] and cyclobutanes[14] may be formed in a similar manner.

Deprotonation of carbon and nitrogen acids

Carbon acids which can be deprotonated by sodium amide in liquid ammonia include terminal alkynes,[15] methyl ketones,[16] cyclohexanone,[17] phenylacetic acid and its derivatives[18] and diphenylmethane.[19] Acetylacetone loses two protons to form a dianion.[20] Sodium amide will also deprotonate indole[21] and piperidine.[22]

Related nonnucleophilic bases

It is however poorly soluble in solvents other than ammonia. Its use has been superseded by the related reagents sodium hydride, sodium bis(trimethylsilyl)amide (NaHMDS), and lithium diisopropylamide (LDA).

Other reactions

  • Rearrangement with orthodeprotonation[23]
  • Oxirane synthesis[24]
  • Indole synthesis[25]
  • Chichibabin reaction

Safety

Sodium amide reacts violently with water to produce ammonia and sodium hydroxide and will burn in air to give oxides of sodium and nitrogen.

NaNH2 + H2O → NH3 + NaOH
2 NaNH2 + 4 O2 → Na2O + 2 NO2 + 2 H2O

In the presence of limited quantities of air and moisture, such as in a poorly closed container, explosive mixtures of peroxides may form. This is accompanied by a yellowing or browning of the solid. As such, sodium amide is be stored in a tightly closed container, under an atmosphere of an inert gas. Sodium amide samples which are yellow or brown in color represent explosion risks.[26]

See also

References

  1. ^ http://goldbook.iupac.org/A00266.html
  2. ^ Buncel, E.; Menon, B. (1977). "Carbanion mechanisms: VII. Metallation of hydrocarbon acids by potassium amide and potassium methylamide in tetrahydrofuran and the relative hydride acidities". Journal of Organometallic Chemistry 141 (1): 1–7.  
  3. ^ Bergstrom, F. W. (1955). "Sodium amide".  
  4. ^ Greenlee, K. W.; Henne, A. L.; Fernelius, W. C. (1946). "Sodium Amide". Inorganic Syntheses 2: 128–135.  
  5. ^ Zalkin, A.; Templeton, D. H. (1956). "The Crystal Structure Of Sodium Amide". Journal of Physical Chemistry 60 (6): 821–823.  
  6. ^ Wells, A. F. (1984). Structural Inorganic Chemistry. Oxford: Clarendon Press.  
  7. ^ L. Lange, W. Treibel "Sodium Amide" in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a24_267
  8. ^ Campbell, K. N.; Campbell, B. K. (1950). "Phenylacetylene".  
  9. ^ Jones, E. R. H.; Eglinton, G.; Whiting, M. C.; Shaw, B. L. (1954). "Ethoxyacetylene".  
    Bou, A.; Pericàs, M. A.; Riera, A.; Serratosa, F. (1987). -butoxyethyne, a valuable synthetic intermediate"tert"Dialkoxyacetylenes: di-. Magriotis, P. A.; Brown, J. T. (1995). "Phenylthioacetylene". Ashworth, P. J.; Mansfield, G. H.; Whiting, M. C. (1955). "2-Butyn-1-ol".  
     

     
  10. ^ Newman, M. S.; Stalick, W. M. (1977). "1-Ethoxy-1-butyne".  
  11. ^ Salaun, J. R.; Champion, J.; Conia, J. M. (1977). oxaspiropentane"via"Cyclobutanone from methylenecyclopropane .  
  12. ^ Nakamura, M.; Wang, X. Q.; Isaka, M.; Yamago, S.; Nakamura, E. (2003). )-pentalen-2-one"H-5-(5,5-dimethyl-1,3-dioxan-2-ylidene)hexahydro-1(2cis"Synthesis and (3+2)-cycloaddition of a 2,2-dialkoxy-1-methylenecyclopropane: 6,6-dimethyl-1-methylene-4,8-dioxaspiro(2.5)octane and .  
  13. ^ Bottini, A. T.; Olsen, R. E. (1964). -Ethylallenimine"N".  
  14. ^ Skorcz, J. A.; Kaminski, F. E. (1968). "1-Cyanobenzocyclobutene".  
  15. ^ Saunders, J. H. (1949). "1-Ethynylcyclohexanol".  
    Peterson, P. E.; Dunham, M. (1977). )-4-Chloro-4-hexenyl trifluoroacetate"Z"(. Kauer, J. C.; Brown, M. (1962). "Tetrolic acid".  
     
  16. ^ Coffman, D. D. (1940). "Dimethylethynylcarbinol".  
  17. ^ Vanderwerf, C. A.; Lemmerman, L. V. (1948). "2-Allylcyclohexanone".  
  18. ^ Hauser, C. R.; Dunnavant, W. R. (1960). "α,β-Diphenylpropionic acid".  
    Kaiser, E. M.; Kenyon, W. G.; Hauser, C. R. (1967). "Ethyl 2,4-diphenylbutanoate". Wawzonek, S.; Smolin, E. M. (1951). "α,β-Diphenylcinnamonitrile".  
     
  19. ^ Murphy, W. S.; Hamrick, P. J.; Hauser, C. R. (1968). "1,1-Diphenylpentane".  
  20. ^ Hampton, K. G.; Harris, T. M.; Hauser, C. R. (1971). "Phenylation of diphenyliodonium chloride: 1-phenyl-2,4-pentanedione".  
    Hampton, K. G.; Harris, T. M.; Hauser, C. R. (1967). "2,4-Nonanedione".  
  21. ^ Potts, K. T.; Saxton, J. E. (1960). "1-Methylindole".  
  22. ^ Bunnett, J. F.; Brotherton, T. K.; Williamson, S. M. (1960). -β-Naphthylpiperidine"N".  
  23. ^ Brazen, W. R.; Hauser, C. R. (1954). "2-Methylbenzyldimethylamine".  
  24. ^ Allen, C. F. H.; VanAllan, J. (1944). "Phenylmethylglycidic ester".  
  25. ^ Allen, C. F. H.; VanAllan, J. (1942). "2-Methylindole".  
  26. ^ "Sodium Amide". Princeton, NJ: Princeton University. 2011-03-16. Retrieved 2011-07-20. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.