Small Ubiquitin-like Modifier (or SUMO) proteins are a family of small proteins that are covalently attached to and detached from other proteins in cells to modify their function. SUMOylation is a post-translational modification involved in various cellular processes, such as nuclear-cytosolic transport, transcriptional regulation, apoptosis, protein stability, response to stress, and progression through the cell cycle.[1]

SUMO proteins are similar to ubiquitin, and SUMOylation is directed by an enzymatic cascade analogous to that involved in ubiquitination. In contrast to ubiquitin, SUMO is not used to tag proteins for degradation. Mature SUMO is produced when the last four amino acids of the C-terminus have been cleaved off to allow formation of an isopeptide bond between the C-terminal glycine residue of SUMO and an acceptor lysine on the target protein.

SUMO family members often have dissimilar names; the SUMO homologue in yeast, for example, is called SMT3 (suppressor of mif two 3). Several pseudogenes have been reported for this gene.


SUMO modification of proteins has many functions. Among the most frequent and best studied are protein stability, nuclear-cytosolic transport, and transcriptional regulation. Typically, only a small fraction of a given protein is SUMOylated and this modification is rapidly reversed by the action of deSUMOylating enzymes. SUMOylation of target proteins has been shown to cause a number of different outcomes including altered localization and binding partners. The SUMO-1 modification of RanGAP1 (the first identified SUMO substrate) leads to its trafficking from cytosol to nuclear pore complex.[2][3] The SUMO modification of hNinein leads to its movement from the centrosome to the nucleus.[4] In many cases, SUMO modification of transcriptional regulators correlates with inhibition of transcription.[5] One can refer to the GeneRIFs of the SUMO proteins, e.g. human SUMO-1,[6] to find out more.

There are 4 confirmed SUMO isoforms in humans; SUMO-1, SUMO-2, SUMO-3 and SUMO4. SUMO-2/3 show a high degree of similarity to each other and are distinct from SUMO-1. SUMO-4 shows similarity to SUMO-2/3 but differs in having a Proline instead of Glutamine at position 90. As a result, SUMO-2/3 isn't processed and conjugated under normal conditions, but is used for modification of proteins under stress-conditions like starvation.[7] During mitosis, SUMO-2/3 localize to centromeres and condensed chromosomes, whereas SUMO-1 localizes to the mitotic spindle and spindle midzone, indicating that SUMO paralogs regulate distinct mitotic processes in mammalian cells.[8] One of the major SUMO conjugation products associated with mitotic chromosomes arose from SUMO-2/3 conjugation of topoisomerase II, which is modified exclusively by SUMO-2/3 during mitosis.[9] SUMO-2/3 modifications seem to be involved specifically in the stress response.[10] SUMO-1 and SUMO-2/3 can form mixed chains, however, because SUMO-1 does not contain the internal SUMO consensus sites found in SUMO-2/3, it is thought to terminate these poly-SUMO chains.[11] Serine 2 of SUMO-1 is phosphorylated, raising the concept of a 'modified modifier'.[12]


SUMO proteins are small; most are around 100 amino acids in length and 12 kDa in mass. The exact length and mass varies between SUMO family members and depends on which organism the protein comes from. Although SUMO has very little sequence identity with ubiquitin at the amino acid level, it has a nearly identical structural fold.

The structure of human SUMO1 is depicted on the right. It shows SUMO1 as a globular protein with both ends of the amino acid chain (shown in red and blue) sticking out of the protein's centre. The spherical core consists of an alpha helix and a beta sheet. The diagrams shown are based on an NMR analysis of the protein in solution.

Prediction of SUMO attachment

Most SUMO-modified proteins contain the tetrapeptide consensus motif Ψ-K-x-D/E where Ψ is a hydrophobic residue, K is the lysine conjugated to SUMO, x is any amino acid (aa), D or E is an acidic residue. Substrate specificity appears to be derived directly from Ubc9 and the respective substrate motif. Currently available prediction programs are:

  • SUMOplot - online free access software developed to predict the probability for the SUMO consensus sequence (SUMO-CS) to be engaged in SUMO attachment.[13] The SUMOplot score system is based on two criteria: 1) direct amino acid match to the SUMO-CS observed and shown to bind Ubc9, and 2) substitution of the consensus amino acid residues with amino acid residues exhibiting similar hydrophobicity. SUMOplot has been used in the past to predict Ubc9 dependent sites.
  • seeSUMO - uses random forests and support vector machines trained on the data collected from the literature[14]
  • SUMOsp - uses PSSM to score potential sumoylation peptide stites. It can predict sites followed the ψKXE motif and unusual sumoylation sites contained other non-canonical motifs.[15]

SUMO Attachment

SUMO attachment to its target is similar to that of ubiquitin (as it is for the other ubiquitin-like proteins such as NEDD 8). A C-terminal peptide is cleaved from SUMO by a protease (in human these are the SENP proteases or Ulp1 in yeast) to reveal a di-glycine motif. SUMO then becomes bound to an E1 enzyme (SUMO Activating Enzyme (SAE)) which is a heterodimer. It is then passed to an E2 which is a conjugating enzyme (Ubc9). Finally, one of a small number of E3 ligating proteins attaches it to the protein. In yeast, there are four SUMO E3 proteins, Cst9,[16] Mms21, Siz1 and Siz2. While in ubiquitination an E3 is essential to add ubiquitin to its target, evidence suggests that the E2 is sufficient in Sumoylation as long as the consensus sequence is present. It is thought that the E3 ligase promotes the efficiency of sumoylation and in some cases has been shown to direct SUMO conjugation onto non-consensus motifs. E3 enzymes can be largely classed into PIAS proteins, such as Mms21 (a member of the Smc5/6 complex) and Pias-gamma and HECT proteins. Some E3's such as RanBP2 however are neither.[17] Recent evidence has shown that PIAS-gamma is required for the sumoylation of the transcription factor yy1 but it is independent of the zinc-RING finger (identified as the functional domain of the E3 ligases). SUMOylation is reversible and is removed from targets by specific SUMO proteases. In budding yeast, the Ulp1 SUMO protease is found bound at the nuclear pore, whereas Ulp2 is nucleoplasmic. The distinct subnuclear localisation of deSUMOylating enzymes is conserved in higher eukaryotes.[18]

See also

  • Ubiquitin
  • Prokaryotic ubiquitin-like protein


Further reading

  • Download PDF

External links

  • LifeSensors' SUMO-based Protein and Peptide Expression Systems
  • Proteins Expressed With SUMO
  • Boston Biochem overview of SUMO reagents and the SUMOylation Cycle
  • SUMO1 homology group from HomoloGene
  • human SUMO proteins on ExPASy: SUMO4
  • UniProt entry for rat Sumo1

Programs for prediction sumoylation:

  • SUMOplot Analysis Program — predicts and scores sumoylation sites in your protein (by Abgent)
  • seeSUMO - prediction of sumoulation sites
  • SUMOsp - prediction of sumoulation sites

Research laboratories

  • Ron Hay's lab
  • Mary Beth Mudgett's lab (plants & bacterial infection)
  • Peter O'Hare's lab (Herpes virus)
  • Mary Dasso's section on cell cycle control
  • Michael Matunis' lab
  • Mary Ann Handel's lab (meiosis, spermatogenesis)
  • Nam-Hai Chua's lab (plants, protein modification)
  • Frauke Melchior's personal page
  • Stefan Jentsch's lab
  • Chris Lima's lab
  • Bones lab (plant immunology) has a summary page on sumoylation
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.