World Library  
Flag as Inappropriate
Email this Article

TATA box

Article Id: WHEBN0000553114
Reproduction Date:

Title: TATA box  
Author: World Heritage Encyclopedia
Language: English
Subject: Promoter (genetics), RNA polymerase II holoenzyme, Pribnow box, TATA-binding protein, GC box
Collection: Regulatory Sequences
Publisher: World Heritage Encyclopedia

TATA box

The TATA box (also called Goldberg-Hogness box)[1] is a DNA sequence (cis-regulatory element) found in the promoter region of genes in archaea and eukaryotes;[2] approximately 24% of human genes contain a TATA box within the core promoter.[3]

Considered to be the core promoter sequence, it is the binding site of either general transcription factors or histones (the binding of a transcription factor blocks the binding of a histone and vice versa) and is involved in the process of transcription by RNA polymerase.


The TATA box has the core

  1. ^ Lifton RP, Goldberg ML, Karp RW, Hogness DS (1978). "The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications". Cold Spring Harb Symp Quant Biol 42: 1047–1051.  
  2. ^ Smale, ST; Kadonaga, JT (2003). "The RNA polymerase II core promoter." (PDF). Annual review of biochemistry 72: 449–79.  
  3. ^ Yang, C; Bolotin, E; Jiang, T; Sladek, FM; Martinez, E (2007). "Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters.". Gene 389 (1): 52–65.  
  4. ^ Patikoglou, G. A.; Kim, J. L.; Sun, L.; Yang, S.-H.; Kodadek, T.; Burley, S. K. (15 December 1999). "TATA element recognition by the TATA box-binding protein has been conserved throughout evolution". Genes & Development 13 (24): 3217–3230.  
  5. ^ Bernard, Virginie; Brunaud, Véronique; Lecharny, Alain (2010). "TC-motifs at the TATA-box expected position in plant genes: a novel class of motifs involved in the transcription regulation". BMC Genomics 11 (1): 166.  
  6. ^ Kutyavin, IV; Afonina, IA; Mills, A; Gorn, VV; Lukhtanov, EA; Belousov, ES; Singer, MJ; Walburger, DK; Lokhov, SG; Gall, AA; Dempcy, R; Reed, MW; Meyer, RB; Hedgpeth, J (15 January 2000). "3'-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures.". Nucleic Acids Research 28 (2): 655–61.  
  7. ^ Yang, C; Bolotin, E; Jiang, T; Sladek, FM; Martinez, E (1 March 2007). "Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters.". Gene 389 (1): 52–65.  
  8. ^ Carninci P, Sandelin A, Lenhard B, et al. (June 2006). "Genome-wide analysis of mammalian promoter architecture and evolution". Nat. Genet. 38 (6): 626–35.  
  9. ^ Suzuki Y, Tsunoda T, Sese J, et al. (May 2001). "Identification and characterization of the potential promoter regions of 1031 kinds of human genes". Genome Res. 11 (5): 677–84.  


See also

Most genes lack a TATA box and use an initiator element or downstream core promoter instead.[7] Nevertheless, TBP is always involved and is forced to bind without sequence specificity. A genome-wide study put the fraction of TATA-dependent human promoters at ~10%.[8] An earlier study of ~1,000 genes found 32% of the promoters had a TATA box.[9]

This cluster of RNA polymerase II and various transcription factors is known as a basal transcriptional complex or BTC. In this state, it only gives a low level of transcription. Other factors must stimulate the BTC to increase transcription levels. One such example of a BTC stimulating region of DNA is the CAAT box.

The TATA box is usually found at the binding site of RNA polymerase II. TFIID, a transcription factor, binds to the TATA box, followed by TFIIA binding to the upstream part of the TFIID protein. TFIIB then binds to the downstream part of TFIID. RNA polymerase can then recognize this multi-protein complex and bind to it, along with various other transcription factors such as TFIIF, TFIIE and TFIIH. Transcription is then initiated, and the polymerase moves along the DNA strand, leaving TFIID and TFIIA bound to the TATA box. These can then facilitate the binding of additional RNA polymerase II molecules.

During the process of transcription, the TATA binding protein (TBP) normally binds to the TATA-box sequence, which unwinds the DNA and bends it through 80°. The AT-rich sequence of the TATA-box facilitates easy unwinding, due to weaker base-stacking interactions between A and T bases, as compared to between G and C. The TBP is an unusual protein in that it binds to the minor groove and binds with a β sheet.[6]


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.