World Library  
Flag as Inappropriate
Email this Article

Tissue transglutaminase

Article Id: WHEBN0005645691
Reproduction Date:

Title: Tissue transglutaminase  
Author: World Heritage Encyclopedia
Language: English
Subject: Coeliac disease, Gluten immunochemistry, TTG, EC 2.3.2, Recent additions 73
Collection: Autoantigens, Ec 2.3.2
Publisher: World Heritage Encyclopedia

Tissue transglutaminase

Transglutaminase 2
Tissue transglutaminase drawn from ​.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols  ; G-ALPHA-h; GNAH; HEL-S-45; TG2; TGC
External IDs ChEMBL: GeneCards:
EC number
RNA expression pattern
Species Human Mouse
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search
Protein-glutamine gamma-glutamyltransferase
EC number
CAS number 80146-85-6
IntEnz IntEnz view
ExPASy NiceZyme view
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / EGO

Tissue transglutaminase (abbreviated as tTG or TG2) is a 78-kDa, calcium dependent cytosol but smaller amounts can also be found in the nucleus and the mitochondria.[2] Intracellular tTG is thought to play an important role in apoptosis.[4] In the extracellular space, tTG binds to proteins of the extracellular matrix (ECM),[5] binding particularly tightly to fibronectin.[6] Extracellular tTG has been linked to cell adhesion, ECM stabilization, wound healing, receptor signaling, cellular proliferation, and cellular motility.[2]

tTG is particularly notable for being the autoantigen in coeliac disease, a lifelong illness in which the consumption of dietary gluten causes a pathological immune response resulting in the inflammation of the small intestine and subsequent villous atrophy.[7][8][9]


  • Mechanism 1
  • Regulation 2
  • Genetics 3
  • Physiology 4
  • Clinical significance 5
    • Diagnostic use 5.1
    • Therapeutic use 5.2
  • References 6
  • External links 7


The catalytic mechanism for crosslinking in human tTG involves the thiol group from a Cys residue in the active site of tTG.[2] The thiol group attacks the carboxamide of a glutamine residue on the surface of a protein or peptide substrate, releasing ammonia, and producing a thioester intermediate. The thioester intermediate can then be attacked by the surface amine of a second substrate (typically from a lysine residue). The end product of the reaction is a stable isopeptide bond between the two substrates (i.e. crosslinking). Alternatively, the thioester intermediate can be hydrolyzed, resulting in the net conversion of the glutamine residue to glutamic acid (i.e. deamidation).[2] The deamidation of glutamine residues catalyzed by tTG is thought to be linked to the pathological immune response to gluten in celiac disease.[8] A schematic for the crosslinking and the deamidation reactions is provided in Figure 1.

reaction mechanism of tTG
Figure 1: Transamidation (crosslinking) and deamidation mechanisms of tissue transglutaminase


Crosslinking activity by tTG requires the binding of Ca2+ ions.[10] Multiple Ca2+ can bind to a single tTG molecule.[2] In contrast, the binding of one molecule of GTP or GDP inhibits the crosslinking activity of the enzyme.[10] Therefore, intracellular tTG is mostly inactive due to the relatively high concentration of GTP/GDP and the low levels of calcium inside the cell.[2][8] Although extracellular tTG is expected to be active due to the low concentration of guanine nucleotides and the high levels of calcium in the extracellular space, evidence has shown that extracellular tTG is mostly inactive.[2][8][10] Recent studies suggest that extracellular tTG is kept inactive by the formation of a disulfide bond between two vicinal Cys residues. Therefore, oxidation/reduction of the disulfide bond serves as a third allosteric regulatory mechanism (along with GTP/GDP and Ca2+) for the activation of tTG.[8] Thioredoxin has been shown to activate extracellular tTG by reducing the disulfide bond.[10] Recent studies have suggested that interferon-γ may serve as an activator of extracellular tTG in the small intestine; these studies have a direct implication to the pathogenesis of celiac disease.[8] Activation of tTG has been shown to be accompanied by large conformational changes, switching from a compact (inactive) to an extended (active) conformation. (see Figure 2)[10][11][12]

X-ray crystallography images of  tissue transglutaminase in two different conformations
Figure 2: Compact (inactive) and extended (active) conformations of tTG


The human tTG gene is located on the 20th chromosome (20q11.2-q12).


tTG is expressed ubiquitously. It requires calcium as a cofactor for transamidation activity. Transcription is increased by retinoic acid. Among its many supposed functions, it appears to play a role in wound healing, apoptosis, and extracellular matrix development[7]

tTG is thought to be involved in the regulation of the cytoskeleton by crosslinking various cytoskeletal proteins including myosin, actin, and spectrin.[13] Evidence shows that intracellular tTG crosslinks itself to myosin. It is also believed that tTG may stabilize the structure of the dying cells during apoptosis by polymerizing the components of the cytoskeleton, therefore preventing the leakage of the cellular contents into the extracellular space.[3]

tTG also has GTPase activity:[1] In the presence of GTP, it suggested to function as a G protein participating in signaling processes.[14] Besides its transglutaminase activity, tTG is proposed to also act as kinase,[15] and protein disulfide isomerase,[16] and deamidase.[17] This latter activity is important in the deamidation of gliadin peptides, thus playing important role in the pathology of coeliac disease.

Clinical significance

tTG is best known for its link with celiac disease.[9] Anti-transglutaminase antibodies (ATA) result in a form of gluten sensitivity in which a cellular response to Triticeae glutens that are crosslinked to tTG are able to stimulate transglutaminase specific B-cell responses that eventually result in the production of ATA IgA and IgG.[18]

tTG is believed to be involved in several neurodegenerative disorders including Alzheimer, Parkinson and Huntington diseases.[19][20] Such neurological diseases are characterized in part by the abnormal aggregation of proteins due to the increased activity of protein crosslinking in the affected brain.[21] Additionally, specific proteins associated with these disorders have been found to be in vivo and in vitro substrates of tTG.[3] Although tTG is up regulated in the areas of the brain affected by Huntington's disease, a recent study showed that increasing levels of tTG do not affect the onset and/or progression of the disease in mice.[22]

Recent studies suggest that tTG also plays a role in inflammation, and tumor biology.[7] tTG expression is elevated in multiple cancer cell types and is implicated in drug resistance and metastasis due to its ability to promote mesenchymal transition and stem cell like properties.

Diagnostic use

Serology for anti-tTG antibodies has superseded older serological tests (anti-endomysium, anti-gliadin, and anti-reticulin) and has a strong sensitivity (99%) and specificity (>90%) for identifying coeliac disease. Modern anti-tTG assays rely on a human recombinant protein as an antigen.[23]

Therapeutic use

Use of tTG as a form of surgical glue is still experimental. It is also being studied as an attenuator of metastasis in certain tumors.[7]

Mouse Mutant Alleles for Tgm2
Marker Symbol for Mouse Gene. This symbol is assigned to the genomic locus by the MGI Tgm2
Mutant Mouse Embryonic Stem Cell Clones. These are the known targeted mutations for this gene in a mouse. tm1a(KOMP)WtsiTgm2
Example structure of targeted conditional mutant allele for this gene
Molecular structure of Tgm2 region with inserted mutation sequence
These Mutant ES Cells can be studied directly or used to generate mice with this gene knocked out. Study of these mice can shed light on the function of Tgm2: see Knockout mouse


  1. ^ a b Király R, Demény M, Fésüs L (December 2011). "Protein transamidation by transglutaminase 2 in cells: a disputed Ca2+-dependent action of a multifunctional protein". FEBS J. 278 (24): 4717–39.  
  2. ^ a b c d e f g h Klöck C, Diraimondo TR, Khosla C (July 2012). "Role of transglutaminase 2 in celiac disease pathogenesis". Semin Immunopathol 34 (4): 513–22.  
  3. ^ a b c Facchiano F, Facchiano A, Facchiano AM (2006). "The role of transglutaminase-2 and its substrates in human diseases". Front. Biosci. 11: 1758–73.  
  4. ^ McConkey DJ, Orrenius S (October 1997). "The role of calcium in the regulation of apoptosis". Biochem. Biophys. Res. Commun. 239 (2): 357–66.  
  5. ^ Lortat-Jacob H, Burhan I, Scarpellini A, Thomas A, Imberty A, Vivès RR, Johnson T, Gutierrez A, Verderio EA (May 2012). "Transglutaminase-2 interaction with heparin: identification of a heparin binding site that regulates cell adhesion to fibronectin-transglutaminase-2 matrix". J. Biol. Chem. 287 (22): 18005–17.  
  6. ^ Akimov SS, Krylov D, Fleischman LF, Belkin AM (February 2000). "Tissue transglutaminase is an integrin-binding adhesion coreceptor for fibronectin". J. Cell Biol. 148 (4): 825–38.  
  7. ^ a b c d Griffin M, Casadio R, Bergamini CM (December 2002). "Transglutaminases: nature's biological glues". Biochem. J. 368 (Pt 2): 377–96.  
  8. ^ a b c d e f Diraimondo TR, Klöck C, Khosla C (April 2012). "Interferon-γ activates transglutaminase 2 via a phosphatidylinositol-3-kinase-dependent pathway: implications for celiac sprue therapy". J. Pharmacol. Exp. Ther. 341 (1): 104–14.  
  9. ^ a b Di Sabatino A, Vanoli A, Giuffrida P, Luinetti O, Solcia E, Corazza GR (August 2012). "The function of tissue transglutaminase in celiac disease". Autoimmun Rev 11 (10): 746–53.  
  10. ^ a b c d e Jin X, Stamnaes J, Klöck C, DiRaimondo TR, Sollid LM, Khosla C (October 2011). "Activation of extracellular transglutaminase 2 by thioredoxin". J. Biol. Chem. 286 (43): 37866–73.  
  11. ^ Pinkas DM, Strop P, Brunger AT, Khosla C (December 2007). "Transglutaminase 2 undergoes a large conformational change upon activation". PLoS Biol. 5 (12): e327.  
  12. ^ Colak G, Keillor JW, Johnson GV (2011). Polymenis, Michael, ed. "Cytosolic guanine nucledotide binding deficient form of transglutaminase 2 (R580a) potentiates cell death in oxygen glucose deprivation". PLoS ONE 6 (1): e16665.  
  13. ^ Nurminskaya MV, Belkin AM (2012). "Cellular functions of tissue transglutaminase". Int Rev Cell Mol Biol. International Review of Cell and Molecular Biology 294: 1–97.  
  14. ^ Fesus L, Piacentini M (October 2002). "Transglutaminase 2: an enigmatic enzyme with diverse functions". Trends Biochem. Sci. 27 (10): 534–9.  
  15. ^ Mishra S, Murphy LJ (June 2004). "Tissue transglutaminase has intrinsic kinase activity: identification of transglutaminase 2 as an insulin-like growth factor-binding protein-3 kinase". J. Biol. Chem. 279 (23): 23863–8.  
  16. ^ Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (August 2003). "A novel function of tissue-type transglutaminase: protein disulphide isomerase". Biochem. J. 373 (Pt 3): 793–803.  
  17. ^ Sakly W, Thomas V, Quash G, El Alaoui S (December 2006). "A role for tissue transglutaminase in alpha-gliadin peptide cytotoxicity". Clin. Exp. Immunol. 146 (3): 550–8.  
  18. ^ Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D (July 1997). "Identification of tissue transglutaminase as the autoantigen of celiac disease". Nat. Med. 3 (7): 797–801.  
  19. ^ Wilhelmus MM, Verhaar R, Andringa G, Bol JG, Cras P, Shan L, Hoozemans JJ, Drukarch B (March 2011). "Presence of tissue transglutaminase in granular endoplasmic reticulum is characteristic of melanized neurons in Parkinson's disease brain". Brain Pathol. 21 (2): 130–9.  
  20. ^ Ricotta M, Iannuzzi M, Vivo GD, Gentile V (May 2010). "Physio-pathological roles of transglutaminase-catalyzed reactions". World J Biol Chem 1 (5): 181–7.  
  21. ^ Martin A, Giuliano A, Collaro D, De Vivo G, Sedia C, Serretiello E, Gentile V (January 2013). "Possible involvement of transglutaminase-catalyzed reactions in the physiopathology of neurodegenerative diseases". Amino Acids 44 (1): 111–8.  
  22. ^ Kumar A, Kneynsberg A, Tucholski J, Perry G, van Groen T, Detloff PJ, Lesort M (September 2012). "Tissue transglutaminase overexpression does not modify the disease phenotype of the R6/2 mouse model of Huntington's disease". Exp. Neurol. 237 (1): 78–89.  
  23. ^ Sblattero D, Berti I, Trevisiol C, Marzari R, Tommasini A, Bradbury A,  

External links

  • Endomysial antibodies
  • A collection of substrates and interaction partners of TG2 is accessible in the TRANSDAB, an interactive transglutaminase substrate database.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.