World Library  
Flag as Inappropriate
Email this Article

Traffic engineering (transportation)

Article Id: WHEBN0000199033
Reproduction Date:

Title: Traffic engineering (transportation)  
Author: World Heritage Encyclopedia
Language: English
Subject: GEH statistic, Aimsun, Transportation engineering, Speed limits in the United States by jurisdiction, Chemical engineering
Collection: Road Traffic Management, Transportation Engineering
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Traffic engineering (transportation)

Complex intersections with multiple vehicle lanes, bike lanes, and crosswalks are common examples of traffic engineering projects

Traffic engineering is a branch of civil engineering that uses engineering techniques to achieve the safe and efficient movement of people and goods on roadways. It focuses mainly on research for safe and efficient traffic flow, such as road geometry, sidewalks and crosswalks, segregated cycle facilities, shared lane marking, traffic signs, road surface markings and traffic lights. Traffic engineering deals with the functional part of transportation system, except the infrastructures provided.

Traffic engineering is closely associated with other disciplines:

Typical traffic engineering projects involve designing traffic control device installations and modifications, including traffic signals, signs, and pavement markings. However, traffic engineers also consider traffic safety by investigating locations with high crash rates and developing countermeasures to reduce crashes. Traffic flow management can be short-term (preparing construction traffic control plans, including detour plans for pedestrian and vehicular traffic) or long-term (estimating the impacts of proposed commercial developments on traffic patterns). Increasingly, traffic problems are being addressed by developing systems for intelligent transportation systems, often in conjunction with other engineering disciplines, such as computer engineering and electrical engineering.

Contents

  • Traffic systems 1
    • Lane flow equation 1.1
  • Highway safety 2
  • See also 3
  • References 4

Traffic systems

Traditionally, road improvements have consisted mainly of building additional infrastructure. However, dynamic elements are now being introduced into road traffic management. Dynamic elements have long been used in rail transport. These include sensors to measure traffic flows and automatic, interconnected, guidance systems to manage traffic (for example, traffic signs which open a lane in different directions depending on the time of day). Also, traffic flow and speed sensors are used to detect problems and alert operators, so that the cause of the congestion can be determined, and measures can be taken to minimize delays. These systems are collectively called intelligent transportation systems.

Lane flow equation

A ramp meter limits the rate at which vehicles can enter the freeway

The relationship between lane flow (Q, vehicles per hour), maximum speed (V, kilometers per hour) and density (K, vehicles per kilometer) is

Q=K V

Observation on limited access facilities suggests that up to a maximum flow, speed does not decline while density increases. However, above a critical threshold, increased density reduces speed. Additionally, beyond a further threshold, increased density reduces flow as well.

Therefore, speeds and lane flows at bottlenecks can be kept high during peak periods by managing traffic density using devices that limit the rate at which vehicles can enter the highway. Ramp meters, signals on entrance ramps that control the rate at which vehicles are allowed to enter the mainline facility, provide this function (at the expense of increased delay for those waiting at the ramps).

Highway safety

Highway safety engineering is a branch of traffic engineering that deals with reducing the frequency and severity of crashes. It uses physics and vehicle dynamics, as well as road user psychology and human factors engineering, to reduce the influence of factors that contribute to crashes.

A typical traffic safety investigation follows these steps [1]

1. Identify and prioritize investigation locations. Locations are selected by looking for sites with higher than average crash rates, and to address citizen complaints.
2. Gather data. This includes obtaining police reports of crashes, observing road user behavior, and collecting information on traffic signs, road surface markings, traffic lights and road geometry.
3. Analyze data. Look for collisions patterns or road conditions that may be contributing to the problem.
4. Identify possible countermeasures to reduce the severity or frequency of crashes.
• Evaluate cost/benefit ratios of the alternatives
• Consider whether a proposed improvement will solve the problem, or cause "crash migration." For example, preventing left turns at one intersection may eliminate left turn crashes at that location, only to increase them a block away.
• Are any disadvantages of proposed improvements likely to be worse than the problem you are trying to solve?
5. Implement improvements.
6. Evaluate results. Usually, this occurs some time after the implementation. Have the severity and frequency of crashes been reduced to an acceptable level? If not, return to step 2.

See also

References

  1. ^ Road Safety Fundamentals. Ithaca, NY: Cornell Local Roads Program. September 2009. 
  • Homburger, Kell and Perkins, Fundamentals of Traffic Engineering, 13th Edition, Institute of Transportation Studies, University of California (Berkeley [1]), 1992.
  • Das, Shantanu and Levinson, D. (2004) A Queuing and Statistical Analysis of Freeway Bottleneck Formation. ASCE Journal of Transportation Engineering Vol. 130, No. 6, November/December 2004, pp. 787–795
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.