World Library  
Flag as Inappropriate
Email this Article

Transheterozygote

Article Id: WHEBN0004064333
Reproduction Date:

Title: Transheterozygote  
Author: World Heritage Encyclopedia
Language: English
Subject: Mosaic (genetics), Classical genetics, Genetics
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Transheterozygote

The term transheterozygote is used in modern genetics periodicals in two different ways. In the first, the transheterozygote has one mutant (-) and one wildtype allele (+) at each of two different genes (A-/A+ and B-/B+ where A and B are different genes). In the second, the transheterozygote carries two different mutated alleles of the same gene (A*/A', see example below). This second definition also applies to the term "heteroallelic combination".

Organisms with one mutant and one wildtype allele at one locus are called simply heterozygous, not transheterozygous.

Transheterozygotes are useful in the study of genetic interactions and complementation testing.

Contents

  • Transheterozygous at two loci 1
  • Heteroallelic combination at one locus 2
  • External links 3
  • References 4

Transheterozygous at two loci

A transheterozygote is a loci (genes). Each of the two loci has one natural (or wild type) allele and one allele that differs from the natural allele because of a mutation. Such an organism can be created by crossing together two organisms that carry one mutation each, in two different genes, and selecting for the presence of both mutations simultaneously in an individual offspring. The offspring will have one mutant allele and one wildtype allele at each of the two genes being studied.

Transheterozygotes are useful in the study of genetic interactions. An example from Drosophila research: the wing vein phenotype of a recessive mutation in the Epidermal growth factor receptor (Egfr), a gene required for communication between cells, can be dominantly enhanced by a recessive mutation in Notch, another cell-signalling gene.[1] A transheterozygote between Egfr and Notch has the genotype Notch/+ ; Egfr/+ (where Notch and Egfr represent mutant alleles, and + represents wildtype alleles). The dominant interaction between Egfr and Notch suggested that the Egfr and Notch signalling pathways act together within the cell to affect the pattern of veins in the fly's wings.

Heteroallelic combination at one locus

Transheterozygote refers to a alleles are different mutated versions of the normal (or wild type) allele. The presence of two different mutant alleles at the same locus are often referred to as a heteroallelic combination.

A transheterozygous (heteroallelic) organism can be created by first crossing together two mutants, each with a different mutation affecting the same locus, and screening for the presence of both alleles simultaneously in an individual offspring. A recent research paper using this definition[2] reported cases of transvection between different alleles of Hsp90.

This second definition is also sometimes applied to the situation where two different chromosomal deletions exist in trans (on the different homologous chromosomes) and fail to complement because they disrupt one or more common genes. (For example, Df(E1)/Df(GN50) in Stowers, et al. 2000[3]).

By way of example, transheterozygote (heteroallelic combination) can result from a cross between two organisms with genotypes AA* and AA', where A is the wild type allele of a given gene, and A* and A' are two different mutant alleles of that gene. As can be seen in the following Punnett square, approximately one fourth of the offspring of this cross will inherit both the A* and A' mutant alleles, resulting in a transheterozygote genotype of A*A'.

A A*
A A A A A*
A' A A' A* A'

Transheterozygotes are useful in dominant wild type phenotype.

External links

  • Genetic dissection of biochemical pathways, Prof. Sharon Amacher, UC Berkeley

References

  1. ^ J. V., Price; E. D. Savenye; D. Lum; A. Breitkreutz (November 1, 1997). "Dominant Enhancers of Egfr in Drosophila Melanogaster: Genetic Links between the Notch and Egfr Signaling Pathways". Genetics 147 (3): 1139–1153.  
  2. ^ L, Yue; Karr, TL, Nathan DF, Swift H, Srinivasan S, Lindquist S (1999). "Genetic analysis of viable Hsp90 alleles reveals a critical role in Drosophila spermatogenesis". Genetics 151 (3): 1065–79.  
  3. ^ RS, Stowers; Garza D; Rascle A; Hogness DS (2000). "The L63 gene is necessary for the ecdysone-induced 63E late puff and encodes CDK proteins required for Drosophila development". Dev. Biol. 221 (1): 23–40.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.