World Library  
Flag as Inappropriate
Email this Article

Wedge (mechanical device)

Article Id: WHEBN0001952367
Reproduction Date:

Title: Wedge (mechanical device)  
Author: World Heritage Encyclopedia
Language: English
Subject: Simple machine, Machine, Simple machines, Inclined plane, Machine (mechanical)
Collection: Mechanics, Simple MacHines, Tools
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Wedge (mechanical device)

A wood splitting wedge

A wedge is a triangular shaped tool, and is a portable inclined plane, and one of the six classical simple machines. It can be used to separate two objects or portions of an object, lift up an object, or hold an object in place. It functions by converting a force applied to its blunt end into forces perpendicular (normal) to its inclined surfaces. The mechanical advantage of a wedge is given by the ratio of the length of its slope to its width.[1][2] Although a short wedge with a wide angle may do a job faster, it requires more force than a long wedge with a narrow angle.

Contents

  • History 1
  • Use of a wedge for lifting and separating 2
  • Blades and wedges 3
  • Examples for holding fast 4
  • Mechanical advantage 5
  • See also 6
  • References 7

History

Flint hand axe found in Winchester

Perhaps the first example of a wedge is the mechanical advantage is the ratio of the input speed to output speed. For a wedge this is given by 1/tanα, where α is the tip angle. The faces of a wedge are modeled as straight lines to form a sliding or prismatic joint.

The origin of the wedge is not known. In ancient Egyptian quarries, bronze wedges were used to break away blocks of stone used in construction. Wooden wedges that swelled after being saturated with water, were also used. Some indigenous peoples of the Americas used antler wedges for splitting and working wood to make canoes, dwellings and other objects.

Use of a wedge for lifting and separating

Wedges are used to lift heavy objects, separating them from the surface upon which they rest.[3]

Consider a block that is to be lifted by a wedge. As the wedge slides under the block, the block slides up the sloped side of a wedge. This lifts the weight FB of the block. The horizontal force FA needed to lift the block is obtained by considering the velocity of the wedge vA and the velocity of the block vB. If we assume the wedge does not dissipate or store energy, then the power into the wedge equals the power out, so

P = F_A v_A = F_B v_B, \!

or

\frac{F_B}{F_A} = \frac{v_A}{v_B}.

The velocity of the block is related to the velocity of the wedge by the slope of the side of the wedge. If the angle of the wedge is α then

v_B = v_A \tan\alpha, \!

which means

MA = \frac{F_B}{F_A} = \frac{1}{\tan\alpha}.

Thus, the smaller the angle α the greater the ratio of the lifting force to the applied force on the wedge. This is the mechanical advantage of the wedge. This formula for mechanical advantage applies to cutting edges and splitting operations as well as to lifting.

They can also be used to separate objects, such as blocks of cut stone. Splitting mauls and splitting wedges are used to split wood along the grain. A narrow wedge with a relatively long taper used to finely adjust the distance between objects is called a shim, and is commonly used in carpentry.

The tips of forks and nails are also wedges, as they split and separate the material into which they are pushed or driven; the shafts may then hold fast due to friction.

Blades and wedges

The blade is a compound inclined plane, consisting of two inclined planes placed so that the planes meet at one edge. When the edge where the two planes meet is pushed into a solid or fluid substance it overcomes the resistance of materials to separate by transferring the force exerted against the material into two opposing forces normal to the faces of the blade.

The blade's first known use by humans was the sharp edge of a flint stone that was used to cleave or split animal tissue, e.g. cutting meat. The use of iron or other metals led to the development of knives for those kind of tasks. The blade of the knife allowed humans to cut meat, fibers, and other plant and animal materials with much less force than it would take to tear them apart by simply pulling with their hands. Other examples are plows, which separate soil particles, scissors which separate fabric, axes which separate wood fibers, and chisels and planes which separate wood.

Wedges, saws and chisels can separate thick and hard materials, such as wood, solid stone and hard metals and they do so with much less force, waste of material, and with more precision, than crushing, which is the application of the same force over a wider area of the material to be separated.

Other examples of wedges are found in drill bits, which produce circular holes in solids. The two edges of a drill bit are sharpened, at opposing angles, into a point and that edge is wound around the shaft of the drill bit. When the drill bit spins on its axis of rotation, the wedges are forced into the material to be separated. The resulting cut in the material is in the direction of rotation of the drill bit while the helical shape of a bit allows the removal of the cut material.

Examples for holding fast

Wedges can also be used to hold objects in place, such as engine parts (poppet valves), bicycle parts (stems and eccentric bottom brackets), and doors. A wedge-type door stop (door wedge) functions largely because of the friction generated between the bottom of the door and the wedge, and the wedge and the floor (or other surface).

Mechanical advantage

Cross-section of a splitting wedge with its length oriented vertically. A downward force produces forces perpendicular to its inclined surfaces.

The mechanical advantage of a wedge can be calculated by dividing the length of the slope by the wedge's width:[1]

\rm MechanicalAdvantage={Length \over Width}

The more acute, or narrow, the angle of a wedge, the greater the ratio of the length of its slope to its width, and thus the more mechanical advantage it will yield.[2]

However, in an elastic material such as wood, friction may bind a narrow wedge more easily than a wide one. This is why the head of a splitting maul has a much wider angle than that of an axe.

See also

References

  1. ^ a b Bowser, Edward Albert (1920), An elementary treatise on analytic mechanics: with numerous examples (25th ed.), D. Van Nostrand Company, pp. 202–203 .
  2. ^ a b McGraw-Hill Concise Encyclopedia of Science & Technology, Third Ed., Sybil P. Parker, ed., McGraw-Hill, Inc., 1992, p. 2041.
  3. ^ J. M. McCarthy and Leo Joskowitz, “Kinematic Synthesis,” Formal Engineering Design Synthesis, (J. Cagan and E. Antonson, eds.), Cambridge Univ. Press, 2002.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.