World Library  
Flag as Inappropriate
Email this Article

Histone Methylation

Article Id: WHEBN0004440593
Reproduction Date:

Title: Histone Methylation  
Author: World Heritage Encyclopedia
Language: English
Subject: Molecular biology, Epigenetics, Post-transcriptional regulation, Genomic imprinting, Epigenetic regulation of neurogenesis
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Histone Methylation

Histone methylation is a process by which methyl groups are transferred to amino acids of histone proteins of chromosomes. Depending on the target site, methylation can modify histones so that different portions of chromatin are activated or inactivated. In most cases, methylation and demethylation of histones turns the genes in DNA "off" and "on", respectively, either by loosening or encompassing their tails, thereby allowing or blocking transcription factors and other proteins to access the DNA. This process is critical for the regulation of gene expression that allows different cells to express different portions of the genome.

Function

Histone methylation, as a mechanism for modifying chromatin structure is associated with stimulation of neural pathways known to be important for formation of long-term memories and learning.[1] Animal models have shown methylation and other epigenetic regulation mechanisms to be associated with conditions of aging, neurodegenerative diseases, and intellectual disability[1] (Rubinstein–Taybi Syndrome, X-linked mental retardation).[2] This modification alters the properties of the nucleosome and affects its interactions with other proteins, particularly in regards to gene transcription processes.

  • Histone methylation can be associated with either transcriptional repression or activation. For example, trimethylation of histone H3 at lysine 4 (H3K4me3) is an active mark for transcription and is upregulated in hippocampus one hour after contextual fear conditioning in rats. However, dimethylation of histone H3 at lysine 9 (H3K9me2), a signal for transcriptional silencing, is increased shortly after contextual fear conditioning.[3]
  • Methylation of some lysine (K) and arginine (R) residues of histones results in transcriptional activation. Examples include methylation of lysine 4 of histone 3 (H3K4), and arginine (R) residues on H3 and H4.
  • Addition of methyl groups to histones by histone methyltransferases, can either activate or further repress transcription, depending on the amino acid being methylated and the presence of other methyl or acetyl groups in the vicinity[4]

Mechanism

The fundamental unit of chromatin, called a nucleosome, contains DNA wound around a protein octamer. This octamer consists of two copies of four histone proteins: H2A, H2B, H3, and H4. Each one of these proteins has a tail extension, and these tails are the targets of nucleosome modification by methylation. DNA activation or inactivation is largely dependent on the specific tail residue methylated and its degree of methylation. Histones can be methylated on lysine (K) and arginine (R) residues only, but methylation is most commonly observed on lysine residues of histone tails H3 and H4.[5] The tail end furthest from the nucleosome core is the N-terminal (residues are numbered starting at this end). Common sites of methylation associated with gene activation include H3K4, H3K48, and H3K79. Common sites for gene inactivation include H3K9 and H3K27.[6] Studies of these sites have found that that methylation of histone tails at different residues serve as markers for the recruitment of various proteins or protein complexes that serve to regulate chromatin activation or inactivation.

Lysine and arginine residues both contain amino groups, which confer basic and hydrophobic characteristics. Lysine is able to be mono-, di-, or trimethylated with a methyl group replacing each hydrogen of its NH3+ group. With a free NH2 and NH2+ group, arginine is able to be mono- or dimethylated. This dimethylation can occur symmetrically on the NH2 group or asymmetrically with one methylation on each group. Each addition of a methyl group on each residue requires a specific set of protein enzymes with various substrates and cofactors. Generally, methylation of an arginine residue requires a complex including protein arginine methyltransferase (PRMT) while lysine requires a specific histone methyltransferase (HMT), usually containing an evolutionarily conserved SET domain.[7]

Different degrees of residue methylation can confer different functions, as exemplified in the methylation of the commonly studied H4K20 residue. Monomethylated H4K20 (H4K20me1) is involved in the compaction of chromatin and therefore transcriptional repression. However, H4K20me2 is vital in the repair of damaged DNA. When dimethylated, the residue provides a platform for the binding of protein 53BP1 involved in the repair of double-stranded DNA breaks. H4K20me3 is observed to be concentrated in heterochromatin and reductions in this trimethylation are observed in cancer progression. Therefore, H4K20me3 serves an additional role in chromatin repression.[7]

Histone methyltransferase

Front view of the human enzyme Histone Lysine N-Methyltransferase, H3 lysine-4 specific.

The genome is tightly condensed into chromatin, which needs to be loosened for transcription to occur. In order to halt the transcription of a gene the DNA must be wound tighter. This can be done by modifying histones at certain sites by methylation. Histone methyltransferases are enzymes which transfer methyl groups from S-Adenosyl methionine onto the lysine or arginine residues of the H3 and H4 histones. There are instances of the core globular domains of histones being methylated as well.

The histone methyltransferases are specific to either lysine or arginine. The lysine-specific transferases are further broken down into whether or not they have a SET domain or a non-SET domain. These domains specify exactly how the enzyme catalyzes the transfer of the methyl from SAM to the transfer protein and further to the histone residue.[8] The methyltransferases can add 1-3 methyls on the target residues.

These methyls that are added to the histones act to regulate transcription by blocking or encouraging DNA access to transcription factors. In this way the integrity of the genome and epigenetic inheritance of genes are under the control of the actions of histone methyltransferases. Histone methylation is key in distinguishing the integrity of the genome and the genes that are expressed by cells, thus giving the cells their identities.

Methylated histones can either repress or activate transcription.[8] For example, while H3K4me2/3 and H3K79me3 are generally associated with transcriptional activity, methylation of H3K9me2/3, H3K27me2/3, and H4K20me3 are associated with repression.

Epigenetics

Epigenetic mechanisms

Modifications made on the histone have an effect on the genes that are expressed in a cell and this is the case when methyls are added to the histone residues by the histone methyltransferases.[9] Histone methylation plays an important role on the assembly of the heterochromatin mechanism and the maintenance of gene boundaries between genes that are transcribed and those that aren’t. These changes are passed down to progeny and can be affected by the environment that the cells are subject to. Epigenetic alterations are reversible meaning that they can be targets for therapy.

The activities of histone methyltransferases are offset by the activity of histone demethylases. This allows for the switching on or off of transcription by reversing pre-existing modifications. It is necessary for the activities of both histone methyltrasnsferases and histone demethylases to be regulated tightly. Misregulation of either can lead to gene expression that leads to increased susceptibility to disease. Many cancers arise from the inappropriate epigenetic effects of misregulated methylation.[10] However, because these processes are at times reversible, there is interest in utilizing their activities in concert with anti-cancer therapies.[10]

Histone methylation in X chromosome inactivation

In female organisms, a sperm containing an [14] Through histone methylation, there is genetic imprinting, so that the same X homolog stays inactivated through chromosome replications and cell divisions.

Mutations

Due to the fact that histone methylation regulates much of what genes become transcribed, even slight changes to the methylation patterns can have dire effects on the organism. Mutations that occur to increase and decrease methylation have great changes on gene regulation, while mutations to enzymes such as [15]

In recent years it has come to the attention of researchers that many types of cancer are caused largely due to epigenetic factors. Cancer can be caused in a variety of ways due to differential methylation of histones. Since the discovery of oncogenes as well as tumor suppressor genes it has been known that a large factor of causing and repressing cancer is within our own genome. If areas around oncogenes become unmethylated these cancer-causing genes have the potential to be transcribed at an alarming rate. Oppositie of this is the methylation of tumor suppressor genes. In cases where the areas around these genes were highly methylated, the tumor suppressor gene was not active and therefore cancer was more likely to occur. These changes in methylation pattern are often due to mutations in methyltransferase and demethyltransferase.[16] Other types of mutations in proteins such as isocitrate dehydrogenase 1 (IDH1) and isocitrate dehydrogenase 2 (IDH2) can cause the inactivation of histone demethyltransferase which in turn can lead to a variety of cancers, gliomas and leukemias, depending on in which cells the mutation occurs.[17]

See also

References

  1. ^ a b Kramer, Jamie M. (February 2013). "Epigenetic regulation of memory: implications in human cognitive disorders,". Biomolecular Concepts 4 (1): 1–12.  
  2. ^ Lilja, Tobias; Nina Heldring; Ola Hermanson (February 2013). "Like a rolling histone: Epigenetic regulation of neural stem cells and brain development by factors controlling histone acetylation and methylation". Biochimica et Biophysica Acta (BBA) - General Subjects 1830 (2): 2354–2360.  
  3. ^ Gupta, Swati; Se Y. Kim; Sonja Artis; David L. Molfese; Armin Schumacher; J. David Sweatt; Richard E. Paylor; Farah D. Lubin (10 March 2010). "Histone Methylation Regulates Memory Formation". The Journal of Neuroscience 30 (10): 3589–3599.  
  4. ^ Greer, Eric L., and Yang Shi. "Histone Methylation: A Dynamic Mark in Health, Disease and Inheritance." Nature Reviews Genetics 13 (2012) 343-57.
  5. ^ Jia, Songtao, and Yu Wang. "Degrees make all the difference." Epigenetics 4:5 (2009) 1-4. http://www.columbia.edu/cu/biology/faculty/jia/09_Epigenetics.pdf
  6. ^ Gilbert, S. F. (2010). Developmental biology. (9th ed.). Sinauer Associates, Inc. 35-37.
  7. ^ a b Reinberg, Danny, and Yi Zhang. "Transcription regulation by histone methylation: Interplay between different covalent modifications of the core histone tails." Genes and Development 15 (2001) 2343-2360. doi:10.1101/gad.927301
  8. ^ a b Judd C. Rice, Scott D. Briggs, Beatrix Ueberheide, Cynthia M. Barber, Jeffrey Shabanowitz, Donald F. Hunt, Yoichi Shinkai, C.David Allis, Histone Methyltransferases Direct Different Degrees of Methylation to Define Distinct Chromatin Domains, Molecular Cell, Volume 12, Issue 6, December 2003, Pages 1591-1598, ISSN 1097-2765, 10.1016/S1097-2765(03)00479-9. (http://www.sciencedirect.com/science/article/pii/S1097276503004799)
  9. ^ Cheung, Peter, and Pricilla Lau. "Epigenetic Regulation by Histone Methylation and Histone Variants." Molecular Endocrinology 19.3 (2005): 563. Print.
  10. ^ a b Mareike Albert, Kristian Helin, Histone methyltransferases in cancer, Seminars in Cell & Developmental Biology, Volume 21, Issue 2, April 2010, Pages 209-220, ISSN 1084-9521, 10.1016/j.semcdb.2009.10.007.
  11. ^ akagi, Nobuo, and Motomichi Sasaki. "Preferential Inactivation of the Paternally Derived X Chromosome in the Extraembryonic Membranes of the Mouse." Nature 256.5519 (1975): 640-42. Print.
  12. ^ Elgin, Sarah C.R., and Shiv I.S. Grewal. "Heterochromatin: Silence Is Golden." Current Biology 13.23 (2003): R895-898. Print.
  13. ^ Barski, A., S. Cuddapah, K. Cui, T. Roh, D. Schones, Z. Wang, G. Wei, I. Chepelev, and K. Zhao. "High-Resolution Profiling of Histone Methylations in the Human Genome." Cell 129.4 (2007): 823-37. Print.
  14. ^ Chow, Jennifer, and Edith Heard. "X Inactivation and the Complexities of Silencing a Sex Chromosome." Current Opinion in Cell Biology 21.3 (2009): 359-66. Print.
  15. ^ Jin, Y., A. M. Rodriguez, J. D. Stanton, A. A. Kitazono, and J. J. Wyrick. "Simultaneous Mutation of Methylated Lysine Residues in Histone H3 Causes Enhanced Gene Silencing, Cell Cycle Defects, and Cell Lethality in Saccharomyces Cerevisiae." Molecular and Cellular Biology 27.19 (2007): 6832-841. Print.
  16. ^ Esteller, M. "Epigenetics Provides a New Generation of Oncogenes and Tumour-suppressor Genes." British Journal of Cancer 94.2 (2006): 179-83. Print.
  17. ^ Lu, Chao, Patrick S. Ward, Gurpreet S. Kapoor, Dan Rohle, Sevin Turcan, Omar Abdel-Wahab, Christopher R. Edwards, Raya Khanin, Maria E. Figueroa, Ari Melnick, Kathryn E. Wellen, Donald M. O'Rourke, Shelley L. Berger, Timothy A. Chan, Ross L. Levine, Ingo K. Mellinghoff, and Craig B. Thompson. "DH Mutation Impairs Histone Demethylation and Results in a Block to Cell Differentiation." Nature 483 (2012): 474-78. Nature.com. Nature Publishing Group. Web. 22 Mar. 2013.

Further reading

  • Gozani, O., & Shi, Y. (2014). Histone Methylation in Chromatin Signaling. In: Fundamentals of Chromatin (pp. 213-256). Springer New York. doi:10.1007/978-1-4614-8624-4_5
  • Shi, Yang; Whetstine, Johnathan R. (January 12, 2007). "Dynamic Regulation of Histone Lysine Methylation by Demethylases". Molecular Cell 25 (1): 1–14.  
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.